RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer
Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2021-09, Vol.81 (18), p.4736-4750 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4750 |
---|---|
container_issue | 18 |
container_start_page | 4736 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 81 |
creator | Labrecque, Mark P Brown, Lisha G Coleman, Ilsa M Lakely, Bryce Brady, Nicholas J Lee, John K Nguyen, Holly M Li, Dapei Hanratty, Brian Haffner, Michael C Rickman, David S True, Lawrence D Lin, Daniel W Lam, Hung-Ming Alumkal, Joshi J Corey, Eva Nelson, Peter S Morrissey, Colm |
description | Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate cancer (AMPC) and AR-negative small cell or neuroendocrine prostate cancer (SCNPC). Here, we interrogated the regulation of RE1-silencing transcription factor (REST), a transcriptional repressor of neuronal genes, and elucidated molecular programs driving AMPC and SCNPC biology. Analysis of prostate cancer cell lines, mCRPC specimens, and LuCaP patient-derived xenograft models detected alternative splicing of REST to REST4 and attenuated REST repressor activity in AMPC and SCNPC. The REST locus was also hypermethylated and REST expression was reduced in SCNPC. While serine/arginine repetitive matrix protein 4 (SRRM4) was previously implicated in alternative splicing of REST in mCRPC, we detected SRRM3 expression in REST4-positive, SRRM4-negative AMPC, and SCNPC. In CRPC cell lines, SRRM3 induced alternative splicing of REST to REST4 and exacerbated the expression of REST-repressed genes. Furthermore, SRRM3 and SRRM4 expression defined molecular subsets of AMPC and SCNPC across species and tumor types. Two AMPC phenotypes and three SCNPC phenotypes were characterized, denoted either by REST attenuation and ASCL1 activity or by progressive activation of neuronal transcription factor programs, respectively. These results nominate SRRM3 as the principal REST splicing factor expressed in early NE differentiation and provide a framework to molecularly classify diverse NE phenotypes in mCRPC. SIGNIFICANCE: This study identifies SRRM3 as a key inducer of cellular plasticity in prostate cancer with neuroendocrine features and delineates distinct neuroendocrine phenotypes to inform therapeutic development and precision medicine applications. |
doi_str_mv | 10.1158/0008-5472.CAN-21-0307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8448969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555642876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-42d80049de3c88778b71684f3e05c6849d2ebe509d02cc4854fa64ff33e341d23</originalsourceid><addsrcrecordid>eNpVkVtPGzEQha2qCMLlJxT5sS9Lfd31viBF4dJKkKLQPluOd5YYbexge5GQ-uPrAI3ok8eec86M9SH0hZIzSqX6RghRlRQNO5tN5xWjFeGk-YQmVHJVNULIz2iy0xygw5Qey1VSIvfRARecMqrIBP1ZzKf4fjM46_wDvjI2h5jw_WJxy7Hx3Wsl8IVLufRHl1b4Ngxgx8FEfLcCH_LLBhIOPZ6ZlKPJLvhqAakYjM94DmMM4Ltgo_OA72Io7xmK2FuIx2ivN0OCk_fzCP2-uvw1-17d_Lz-MZveVFZQmivBOkWIaDvgVqmmUcuG1kr0HIi0pWg7BkuQpO0Is1YoKXpTi77nHLigHeNH6PwtdzMu19BZ8GXTQW-iW5v4ooNx-v-Odyv9EJ61EkK1dVsCvr4HxPA0Qsp67ZKFYTAewpg0k1LWgqmmLlL5JrXlrylCvxtDid6S01sqektFF3KaUb0lV3ynH3fcuf6h4n8BgsaWIg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2555642876</pqid></control><display><type>article</type><title>RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Labrecque, Mark P ; Brown, Lisha G ; Coleman, Ilsa M ; Lakely, Bryce ; Brady, Nicholas J ; Lee, John K ; Nguyen, Holly M ; Li, Dapei ; Hanratty, Brian ; Haffner, Michael C ; Rickman, David S ; True, Lawrence D ; Lin, Daniel W ; Lam, Hung-Ming ; Alumkal, Joshi J ; Corey, Eva ; Nelson, Peter S ; Morrissey, Colm</creator><creatorcontrib>Labrecque, Mark P ; Brown, Lisha G ; Coleman, Ilsa M ; Lakely, Bryce ; Brady, Nicholas J ; Lee, John K ; Nguyen, Holly M ; Li, Dapei ; Hanratty, Brian ; Haffner, Michael C ; Rickman, David S ; True, Lawrence D ; Lin, Daniel W ; Lam, Hung-Ming ; Alumkal, Joshi J ; Corey, Eva ; Nelson, Peter S ; Morrissey, Colm</creatorcontrib><description>Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate cancer (AMPC) and AR-negative small cell or neuroendocrine prostate cancer (SCNPC). Here, we interrogated the regulation of RE1-silencing transcription factor (REST), a transcriptional repressor of neuronal genes, and elucidated molecular programs driving AMPC and SCNPC biology. Analysis of prostate cancer cell lines, mCRPC specimens, and LuCaP patient-derived xenograft models detected alternative splicing of REST to REST4 and attenuated REST repressor activity in AMPC and SCNPC. The REST locus was also hypermethylated and REST expression was reduced in SCNPC. While serine/arginine repetitive matrix protein 4 (SRRM4) was previously implicated in alternative splicing of REST in mCRPC, we detected SRRM3 expression in REST4-positive, SRRM4-negative AMPC, and SCNPC. In CRPC cell lines, SRRM3 induced alternative splicing of REST to REST4 and exacerbated the expression of REST-repressed genes. Furthermore, SRRM3 and SRRM4 expression defined molecular subsets of AMPC and SCNPC across species and tumor types. Two AMPC phenotypes and three SCNPC phenotypes were characterized, denoted either by REST attenuation and ASCL1 activity or by progressive activation of neuronal transcription factor programs, respectively. These results nominate SRRM3 as the principal REST splicing factor expressed in early NE differentiation and provide a framework to molecularly classify diverse NE phenotypes in mCRPC. SIGNIFICANCE: This study identifies SRRM3 as a key inducer of cellular plasticity in prostate cancer with neuroendocrine features and delineates distinct neuroendocrine phenotypes to inform therapeutic development and precision medicine applications.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-21-0307</identifier><identifier>PMID: 34312180</identifier><language>eng</language><publisher>United States</publisher><subject>Alternative Splicing ; Biomarkers, Tumor ; Carcinoma, Neuroendocrine - genetics ; Carcinoma, Neuroendocrine - metabolism ; Carcinoma, Neuroendocrine - pathology ; Cell Line, Tumor ; Ectopic Gene Expression ; Gene Expression Regulation, Neoplastic ; Humans ; Immunohistochemistry ; Male ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Prostatic Neoplasms, Castration-Resistant - genetics ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Prostatic Neoplasms, Castration-Resistant - pathology ; Proteins - genetics ; Proteins - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA Splicing Factors - metabolism</subject><ispartof>Cancer research (Chicago, Ill.), 2021-09, Vol.81 (18), p.4736-4750</ispartof><rights>2021 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-42d80049de3c88778b71684f3e05c6849d2ebe509d02cc4854fa64ff33e341d23</citedby><cites>FETCH-LOGICAL-c411t-42d80049de3c88778b71684f3e05c6849d2ebe509d02cc4854fa64ff33e341d23</cites><orcidid>0000-0002-9244-3807 ; 0000-0001-7887-7599 ; 0000-0002-2928-0232 ; 0000-0003-4580-649X ; 0000-0002-6570-2180 ; 0000-0003-1278-0166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34312180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Labrecque, Mark P</creatorcontrib><creatorcontrib>Brown, Lisha G</creatorcontrib><creatorcontrib>Coleman, Ilsa M</creatorcontrib><creatorcontrib>Lakely, Bryce</creatorcontrib><creatorcontrib>Brady, Nicholas J</creatorcontrib><creatorcontrib>Lee, John K</creatorcontrib><creatorcontrib>Nguyen, Holly M</creatorcontrib><creatorcontrib>Li, Dapei</creatorcontrib><creatorcontrib>Hanratty, Brian</creatorcontrib><creatorcontrib>Haffner, Michael C</creatorcontrib><creatorcontrib>Rickman, David S</creatorcontrib><creatorcontrib>True, Lawrence D</creatorcontrib><creatorcontrib>Lin, Daniel W</creatorcontrib><creatorcontrib>Lam, Hung-Ming</creatorcontrib><creatorcontrib>Alumkal, Joshi J</creatorcontrib><creatorcontrib>Corey, Eva</creatorcontrib><creatorcontrib>Nelson, Peter S</creatorcontrib><creatorcontrib>Morrissey, Colm</creatorcontrib><title>RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate cancer (AMPC) and AR-negative small cell or neuroendocrine prostate cancer (SCNPC). Here, we interrogated the regulation of RE1-silencing transcription factor (REST), a transcriptional repressor of neuronal genes, and elucidated molecular programs driving AMPC and SCNPC biology. Analysis of prostate cancer cell lines, mCRPC specimens, and LuCaP patient-derived xenograft models detected alternative splicing of REST to REST4 and attenuated REST repressor activity in AMPC and SCNPC. The REST locus was also hypermethylated and REST expression was reduced in SCNPC. While serine/arginine repetitive matrix protein 4 (SRRM4) was previously implicated in alternative splicing of REST in mCRPC, we detected SRRM3 expression in REST4-positive, SRRM4-negative AMPC, and SCNPC. In CRPC cell lines, SRRM3 induced alternative splicing of REST to REST4 and exacerbated the expression of REST-repressed genes. Furthermore, SRRM3 and SRRM4 expression defined molecular subsets of AMPC and SCNPC across species and tumor types. Two AMPC phenotypes and three SCNPC phenotypes were characterized, denoted either by REST attenuation and ASCL1 activity or by progressive activation of neuronal transcription factor programs, respectively. These results nominate SRRM3 as the principal REST splicing factor expressed in early NE differentiation and provide a framework to molecularly classify diverse NE phenotypes in mCRPC. SIGNIFICANCE: This study identifies SRRM3 as a key inducer of cellular plasticity in prostate cancer with neuroendocrine features and delineates distinct neuroendocrine phenotypes to inform therapeutic development and precision medicine applications.</description><subject>Alternative Splicing</subject><subject>Biomarkers, Tumor</subject><subject>Carcinoma, Neuroendocrine - genetics</subject><subject>Carcinoma, Neuroendocrine - metabolism</subject><subject>Carcinoma, Neuroendocrine - pathology</subject><subject>Cell Line, Tumor</subject><subject>Ectopic Gene Expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Prostatic Neoplasms, Castration-Resistant - genetics</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA Splicing Factors - metabolism</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkVtPGzEQha2qCMLlJxT5sS9Lfd31viBF4dJKkKLQPluOd5YYbexge5GQ-uPrAI3ok8eec86M9SH0hZIzSqX6RghRlRQNO5tN5xWjFeGk-YQmVHJVNULIz2iy0xygw5Qey1VSIvfRARecMqrIBP1ZzKf4fjM46_wDvjI2h5jw_WJxy7Hx3Wsl8IVLufRHl1b4Ngxgx8FEfLcCH_LLBhIOPZ6ZlKPJLvhqAakYjM94DmMM4Ltgo_OA72Io7xmK2FuIx2ivN0OCk_fzCP2-uvw1-17d_Lz-MZveVFZQmivBOkWIaDvgVqmmUcuG1kr0HIi0pWg7BkuQpO0Is1YoKXpTi77nHLigHeNH6PwtdzMu19BZ8GXTQW-iW5v4ooNx-v-Odyv9EJ61EkK1dVsCvr4HxPA0Qsp67ZKFYTAewpg0k1LWgqmmLlL5JrXlrylCvxtDid6S01sqektFF3KaUb0lV3ynH3fcuf6h4n8BgsaWIg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Labrecque, Mark P</creator><creator>Brown, Lisha G</creator><creator>Coleman, Ilsa M</creator><creator>Lakely, Bryce</creator><creator>Brady, Nicholas J</creator><creator>Lee, John K</creator><creator>Nguyen, Holly M</creator><creator>Li, Dapei</creator><creator>Hanratty, Brian</creator><creator>Haffner, Michael C</creator><creator>Rickman, David S</creator><creator>True, Lawrence D</creator><creator>Lin, Daniel W</creator><creator>Lam, Hung-Ming</creator><creator>Alumkal, Joshi J</creator><creator>Corey, Eva</creator><creator>Nelson, Peter S</creator><creator>Morrissey, Colm</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9244-3807</orcidid><orcidid>https://orcid.org/0000-0001-7887-7599</orcidid><orcidid>https://orcid.org/0000-0002-2928-0232</orcidid><orcidid>https://orcid.org/0000-0003-4580-649X</orcidid><orcidid>https://orcid.org/0000-0002-6570-2180</orcidid><orcidid>https://orcid.org/0000-0003-1278-0166</orcidid></search><sort><creationdate>20210915</creationdate><title>RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer</title><author>Labrecque, Mark P ; Brown, Lisha G ; Coleman, Ilsa M ; Lakely, Bryce ; Brady, Nicholas J ; Lee, John K ; Nguyen, Holly M ; Li, Dapei ; Hanratty, Brian ; Haffner, Michael C ; Rickman, David S ; True, Lawrence D ; Lin, Daniel W ; Lam, Hung-Ming ; Alumkal, Joshi J ; Corey, Eva ; Nelson, Peter S ; Morrissey, Colm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-42d80049de3c88778b71684f3e05c6849d2ebe509d02cc4854fa64ff33e341d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alternative Splicing</topic><topic>Biomarkers, Tumor</topic><topic>Carcinoma, Neuroendocrine - genetics</topic><topic>Carcinoma, Neuroendocrine - metabolism</topic><topic>Carcinoma, Neuroendocrine - pathology</topic><topic>Cell Line, Tumor</topic><topic>Ectopic Gene Expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Prostatic Neoplasms, Castration-Resistant - genetics</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA Splicing Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labrecque, Mark P</creatorcontrib><creatorcontrib>Brown, Lisha G</creatorcontrib><creatorcontrib>Coleman, Ilsa M</creatorcontrib><creatorcontrib>Lakely, Bryce</creatorcontrib><creatorcontrib>Brady, Nicholas J</creatorcontrib><creatorcontrib>Lee, John K</creatorcontrib><creatorcontrib>Nguyen, Holly M</creatorcontrib><creatorcontrib>Li, Dapei</creatorcontrib><creatorcontrib>Hanratty, Brian</creatorcontrib><creatorcontrib>Haffner, Michael C</creatorcontrib><creatorcontrib>Rickman, David S</creatorcontrib><creatorcontrib>True, Lawrence D</creatorcontrib><creatorcontrib>Lin, Daniel W</creatorcontrib><creatorcontrib>Lam, Hung-Ming</creatorcontrib><creatorcontrib>Alumkal, Joshi J</creatorcontrib><creatorcontrib>Corey, Eva</creatorcontrib><creatorcontrib>Nelson, Peter S</creatorcontrib><creatorcontrib>Morrissey, Colm</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labrecque, Mark P</au><au>Brown, Lisha G</au><au>Coleman, Ilsa M</au><au>Lakely, Bryce</au><au>Brady, Nicholas J</au><au>Lee, John K</au><au>Nguyen, Holly M</au><au>Li, Dapei</au><au>Hanratty, Brian</au><au>Haffner, Michael C</au><au>Rickman, David S</au><au>True, Lawrence D</au><au>Lin, Daniel W</au><au>Lam, Hung-Ming</au><au>Alumkal, Joshi J</au><au>Corey, Eva</au><au>Nelson, Peter S</au><au>Morrissey, Colm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2021-09-15</date><risdate>2021</risdate><volume>81</volume><issue>18</issue><spage>4736</spage><epage>4750</epage><pages>4736-4750</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Neuroendocrine (NE) differentiation in metastatic castration-resistant prostate cancer (mCRPC) is an increasingly common clinical feature arising from cellular plasticity. We recently characterized two mCRPC phenotypes with NE features: androgen receptor (AR)-positive NE-positive amphicrine prostate cancer (AMPC) and AR-negative small cell or neuroendocrine prostate cancer (SCNPC). Here, we interrogated the regulation of RE1-silencing transcription factor (REST), a transcriptional repressor of neuronal genes, and elucidated molecular programs driving AMPC and SCNPC biology. Analysis of prostate cancer cell lines, mCRPC specimens, and LuCaP patient-derived xenograft models detected alternative splicing of REST to REST4 and attenuated REST repressor activity in AMPC and SCNPC. The REST locus was also hypermethylated and REST expression was reduced in SCNPC. While serine/arginine repetitive matrix protein 4 (SRRM4) was previously implicated in alternative splicing of REST in mCRPC, we detected SRRM3 expression in REST4-positive, SRRM4-negative AMPC, and SCNPC. In CRPC cell lines, SRRM3 induced alternative splicing of REST to REST4 and exacerbated the expression of REST-repressed genes. Furthermore, SRRM3 and SRRM4 expression defined molecular subsets of AMPC and SCNPC across species and tumor types. Two AMPC phenotypes and three SCNPC phenotypes were characterized, denoted either by REST attenuation and ASCL1 activity or by progressive activation of neuronal transcription factor programs, respectively. These results nominate SRRM3 as the principal REST splicing factor expressed in early NE differentiation and provide a framework to molecularly classify diverse NE phenotypes in mCRPC. SIGNIFICANCE: This study identifies SRRM3 as a key inducer of cellular plasticity in prostate cancer with neuroendocrine features and delineates distinct neuroendocrine phenotypes to inform therapeutic development and precision medicine applications.</abstract><cop>United States</cop><pmid>34312180</pmid><doi>10.1158/0008-5472.CAN-21-0307</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9244-3807</orcidid><orcidid>https://orcid.org/0000-0001-7887-7599</orcidid><orcidid>https://orcid.org/0000-0002-2928-0232</orcidid><orcidid>https://orcid.org/0000-0003-4580-649X</orcidid><orcidid>https://orcid.org/0000-0002-6570-2180</orcidid><orcidid>https://orcid.org/0000-0003-1278-0166</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2021-09, Vol.81 (18), p.4736-4750 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8448969 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Alternative Splicing Biomarkers, Tumor Carcinoma, Neuroendocrine - genetics Carcinoma, Neuroendocrine - metabolism Carcinoma, Neuroendocrine - pathology Cell Line, Tumor Ectopic Gene Expression Gene Expression Regulation, Neoplastic Humans Immunohistochemistry Male Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Prostatic Neoplasms, Castration-Resistant - genetics Prostatic Neoplasms, Castration-Resistant - metabolism Prostatic Neoplasms, Castration-Resistant - pathology Proteins - genetics Proteins - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism RNA Splicing Factors - metabolism |
title | RNA Splicing Factors SRRM3 and SRRM4 Distinguish Molecular Phenotypes of Castration-Resistant Neuroendocrine Prostate Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A51%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNA%20Splicing%20Factors%20SRRM3%20and%20SRRM4%20Distinguish%20Molecular%20Phenotypes%20of%20Castration-Resistant%20Neuroendocrine%20Prostate%20Cancer&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Labrecque,%20Mark%20P&rft.date=2021-09-15&rft.volume=81&rft.issue=18&rft.spage=4736&rft.epage=4750&rft.pages=4736-4750&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-21-0307&rft_dat=%3Cproquest_pubme%3E2555642876%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2555642876&rft_id=info:pmid/34312180&rfr_iscdi=true |