Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine
T follicular helper (T FH ) cells are crucial for B cell-mediated humoral immunity 1 . Although transcription factors such as BCL6 drive the differentiation of T FH cells 2 , 3 , it is unclear whether and how post-transcriptional and metabolic programs enforce T FH cell programming. Here we show tha...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-07, Vol.595 (7869), p.724-729 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 729 |
---|---|
container_issue | 7869 |
container_start_page | 724 |
container_title | Nature (London) |
container_volume | 595 |
creator | Fu, Guotong Guy, Clifford S. Chapman, Nicole M. Palacios, Gustavo Wei, Jun Zhou, Peipei Long, Lingyun Wang, Yong-Dong Qian, Chenxi Dhungana, Yogesh Huang, Hongling KC, Anil Shi, Hao Rankin, Sherri Brown, Scott A. Johnson, Amanda Wakefield, Randall Robinson, Camenzind G. Liu, Xueyan Sheyn, Anthony Yu, Jiyang Jackowski, Suzanne Chi, Hongbo |
description | T follicular helper (T
FH
) cells are crucial for B cell-mediated humoral immunity
1
. Although transcription factors such as BCL6 drive the differentiation of T
FH
cells
2
,
3
, it is unclear whether and how post-transcriptional and metabolic programs enforce T
FH
cell programming. Here we show that the cytidine diphosphate (CDP)–ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of T
FH
cells and humoral immunity. Using in vivo CRISPR–Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI—enzymes in the CDP–ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)—as selective post-transcriptional regulators of T
FH
cell differentiation that act by promoting the surface expression and functional effects of CXCR5. T
FH
cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP–ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of
Pcyt2
, but not of
Pcyt1a
(which mediates the CDP–choline pathway), in activated T cells impairs the differentiation of T
FH
cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on
Pcyt2
. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for T
FH
cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Enzymes in the cytidine diphosphate–ethanolamine metabolic pathway, which promotes de novo synthesis of phosphatidylethanolamine, are shown to act as post-transcriptional mediators of the differentiation of T follicular helper (T
FH
) cells, by regulating the chemokine receptor CXCR5. |
doi_str_mv | 10.1038/s41586-021-03692-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8448202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2556441946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432z-9c131ddc9f0a5bf5100c478283ebbfd845d87bbb901d90e76c659241adc9bf293</originalsourceid><addsrcrecordid>eNp9kT1vFDEYhC0EIpeEP0BliYZmwd9rN0goIiRSojShtmyvN-vIax_2LtLdr8eXi0BQpHqL95nRjAaA9xh9wojKz5VhLkWHCO4QFYp0-1dgg1kvOiZk_xpsECKyQ5KKE3Ba6yNCiOOevQUnlBHKKBMbcHfrF2NzDA66nJaSI8wjvL-8gs7HWKFJA5zWORcTYZjnNYVlB-0Obqdct5NZwrCLfplMytHMIflz8GY0sfp3z_cM_Lj8dn9x1d3cfb---HrTOUbJvlMOUzwMTo3IcDtyjJBjvSSSemvHQTI-yN5aqxAeFPK9cIIrwrBpEjsSRc_Al6PvdrWzH5xv2U3U2xJmU3Y6m6D__aQw6Yf8S0vGJEGkGXx8Nij55-rroudQD51N8nmtmnCmhJRciYZ--A99zGtJrV6juGAMK3agyJFyJdda_PgnDEb6sJc-7qXbXvppL71vInoU1QanB1_-Wr-g-g0dfJki</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556441946</pqid></control><display><type>article</type><title>Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Fu, Guotong ; Guy, Clifford S. ; Chapman, Nicole M. ; Palacios, Gustavo ; Wei, Jun ; Zhou, Peipei ; Long, Lingyun ; Wang, Yong-Dong ; Qian, Chenxi ; Dhungana, Yogesh ; Huang, Hongling ; KC, Anil ; Shi, Hao ; Rankin, Sherri ; Brown, Scott A. ; Johnson, Amanda ; Wakefield, Randall ; Robinson, Camenzind G. ; Liu, Xueyan ; Sheyn, Anthony ; Yu, Jiyang ; Jackowski, Suzanne ; Chi, Hongbo</creator><creatorcontrib>Fu, Guotong ; Guy, Clifford S. ; Chapman, Nicole M. ; Palacios, Gustavo ; Wei, Jun ; Zhou, Peipei ; Long, Lingyun ; Wang, Yong-Dong ; Qian, Chenxi ; Dhungana, Yogesh ; Huang, Hongling ; KC, Anil ; Shi, Hao ; Rankin, Sherri ; Brown, Scott A. ; Johnson, Amanda ; Wakefield, Randall ; Robinson, Camenzind G. ; Liu, Xueyan ; Sheyn, Anthony ; Yu, Jiyang ; Jackowski, Suzanne ; Chi, Hongbo</creatorcontrib><description>T follicular helper (T
FH
) cells are crucial for B cell-mediated humoral immunity
1
. Although transcription factors such as BCL6 drive the differentiation of T
FH
cells
2
,
3
, it is unclear whether and how post-transcriptional and metabolic programs enforce T
FH
cell programming. Here we show that the cytidine diphosphate (CDP)–ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of T
FH
cells and humoral immunity. Using in vivo CRISPR–Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI—enzymes in the CDP–ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)—as selective post-transcriptional regulators of T
FH
cell differentiation that act by promoting the surface expression and functional effects of CXCR5. T
FH
cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP–ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of
Pcyt2
, but not of
Pcyt1a
(which mediates the CDP–choline pathway), in activated T cells impairs the differentiation of T
FH
cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on
Pcyt2
. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for T
FH
cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Enzymes in the cytidine diphosphate–ethanolamine metabolic pathway, which promotes de novo synthesis of phosphatidylethanolamine, are shown to act as post-transcriptional mediators of the differentiation of T follicular helper (T
FH
) cells, by regulating the chemokine receptor CXCR5.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03692-z</identifier><identifier>PMID: 34234346</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 14/19 ; 14/28 ; 631/250/1619/554/1898/1270 ; 631/250/2152/1566/2493 ; 64/60 ; 96/106 ; 96/31 ; 96/95 ; Bcl-6 protein ; Biosynthesis ; Cell differentiation ; Choline ; CXCR5 protein ; Differentiation (biology) ; Enzymes ; Ethanolamine ; Genes ; Humanities and Social Sciences ; Humoral immunity ; Immune response (humoral) ; Immunity ; Infections ; Internalization ; Kinases ; Lipid metabolism ; Lipids ; Localization ; Lymphocytes ; Lymphocytes B ; Lymphocytes T ; Metabolism ; multidisciplinary ; Phosphatidylethanolamine ; Phospholipids ; Post-transcription ; Science ; Science (multidisciplinary) ; Signal transduction ; Synthesis ; Transcription factors</subject><ispartof>Nature (London), 2021-07, Vol.595 (7869), p.724-729</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>Copyright Nature Publishing Group Jul 29, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432z-9c131ddc9f0a5bf5100c478283ebbfd845d87bbb901d90e76c659241adc9bf293</citedby><cites>FETCH-LOGICAL-c432z-9c131ddc9f0a5bf5100c478283ebbfd845d87bbb901d90e76c659241adc9bf293</cites><orcidid>0000-0002-7277-692X ; 0000-0002-9997-2496 ; 0000-0002-6233-8109 ; 0000-0003-3629-4330 ; 0000-0002-6855-1429 ; 0000-0002-2796-629X ; 0000-0001-8751-9216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Fu, Guotong</creatorcontrib><creatorcontrib>Guy, Clifford S.</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Palacios, Gustavo</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Zhou, Peipei</creatorcontrib><creatorcontrib>Long, Lingyun</creatorcontrib><creatorcontrib>Wang, Yong-Dong</creatorcontrib><creatorcontrib>Qian, Chenxi</creatorcontrib><creatorcontrib>Dhungana, Yogesh</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>KC, Anil</creatorcontrib><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Rankin, Sherri</creatorcontrib><creatorcontrib>Brown, Scott A.</creatorcontrib><creatorcontrib>Johnson, Amanda</creatorcontrib><creatorcontrib>Wakefield, Randall</creatorcontrib><creatorcontrib>Robinson, Camenzind G.</creatorcontrib><creatorcontrib>Liu, Xueyan</creatorcontrib><creatorcontrib>Sheyn, Anthony</creatorcontrib><creatorcontrib>Yu, Jiyang</creatorcontrib><creatorcontrib>Jackowski, Suzanne</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><title>Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>T follicular helper (T
FH
) cells are crucial for B cell-mediated humoral immunity
1
. Although transcription factors such as BCL6 drive the differentiation of T
FH
cells
2
,
3
, it is unclear whether and how post-transcriptional and metabolic programs enforce T
FH
cell programming. Here we show that the cytidine diphosphate (CDP)–ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of T
FH
cells and humoral immunity. Using in vivo CRISPR–Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI—enzymes in the CDP–ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)—as selective post-transcriptional regulators of T
FH
cell differentiation that act by promoting the surface expression and functional effects of CXCR5. T
FH
cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP–ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of
Pcyt2
, but not of
Pcyt1a
(which mediates the CDP–choline pathway), in activated T cells impairs the differentiation of T
FH
cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on
Pcyt2
. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for T
FH
cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Enzymes in the cytidine diphosphate–ethanolamine metabolic pathway, which promotes de novo synthesis of phosphatidylethanolamine, are shown to act as post-transcriptional mediators of the differentiation of T follicular helper (T
FH
) cells, by regulating the chemokine receptor CXCR5.</description><subject>13</subject><subject>14/19</subject><subject>14/28</subject><subject>631/250/1619/554/1898/1270</subject><subject>631/250/2152/1566/2493</subject><subject>64/60</subject><subject>96/106</subject><subject>96/31</subject><subject>96/95</subject><subject>Bcl-6 protein</subject><subject>Biosynthesis</subject><subject>Cell differentiation</subject><subject>Choline</subject><subject>CXCR5 protein</subject><subject>Differentiation (biology)</subject><subject>Enzymes</subject><subject>Ethanolamine</subject><subject>Genes</subject><subject>Humanities and Social Sciences</subject><subject>Humoral immunity</subject><subject>Immune response (humoral)</subject><subject>Immunity</subject><subject>Infections</subject><subject>Internalization</subject><subject>Kinases</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Localization</subject><subject>Lymphocytes</subject><subject>Lymphocytes B</subject><subject>Lymphocytes T</subject><subject>Metabolism</subject><subject>multidisciplinary</subject><subject>Phosphatidylethanolamine</subject><subject>Phospholipids</subject><subject>Post-transcription</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal transduction</subject><subject>Synthesis</subject><subject>Transcription factors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kT1vFDEYhC0EIpeEP0BliYZmwd9rN0goIiRSojShtmyvN-vIax_2LtLdr8eXi0BQpHqL95nRjAaA9xh9wojKz5VhLkWHCO4QFYp0-1dgg1kvOiZk_xpsECKyQ5KKE3Ba6yNCiOOevQUnlBHKKBMbcHfrF2NzDA66nJaSI8wjvL-8gs7HWKFJA5zWORcTYZjnNYVlB-0Obqdct5NZwrCLfplMytHMIflz8GY0sfp3z_cM_Lj8dn9x1d3cfb---HrTOUbJvlMOUzwMTo3IcDtyjJBjvSSSemvHQTI-yN5aqxAeFPK9cIIrwrBpEjsSRc_Al6PvdrWzH5xv2U3U2xJmU3Y6m6D__aQw6Yf8S0vGJEGkGXx8Nij55-rroudQD51N8nmtmnCmhJRciYZ--A99zGtJrV6juGAMK3agyJFyJdda_PgnDEb6sJc-7qXbXvppL71vInoU1QanB1_-Wr-g-g0dfJki</recordid><startdate>20210729</startdate><enddate>20210729</enddate><creator>Fu, Guotong</creator><creator>Guy, Clifford S.</creator><creator>Chapman, Nicole M.</creator><creator>Palacios, Gustavo</creator><creator>Wei, Jun</creator><creator>Zhou, Peipei</creator><creator>Long, Lingyun</creator><creator>Wang, Yong-Dong</creator><creator>Qian, Chenxi</creator><creator>Dhungana, Yogesh</creator><creator>Huang, Hongling</creator><creator>KC, Anil</creator><creator>Shi, Hao</creator><creator>Rankin, Sherri</creator><creator>Brown, Scott A.</creator><creator>Johnson, Amanda</creator><creator>Wakefield, Randall</creator><creator>Robinson, Camenzind G.</creator><creator>Liu, Xueyan</creator><creator>Sheyn, Anthony</creator><creator>Yu, Jiyang</creator><creator>Jackowski, Suzanne</creator><creator>Chi, Hongbo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7277-692X</orcidid><orcidid>https://orcid.org/0000-0002-9997-2496</orcidid><orcidid>https://orcid.org/0000-0002-6233-8109</orcidid><orcidid>https://orcid.org/0000-0003-3629-4330</orcidid><orcidid>https://orcid.org/0000-0002-6855-1429</orcidid><orcidid>https://orcid.org/0000-0002-2796-629X</orcidid><orcidid>https://orcid.org/0000-0001-8751-9216</orcidid></search><sort><creationdate>20210729</creationdate><title>Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine</title><author>Fu, Guotong ; Guy, Clifford S. ; Chapman, Nicole M. ; Palacios, Gustavo ; Wei, Jun ; Zhou, Peipei ; Long, Lingyun ; Wang, Yong-Dong ; Qian, Chenxi ; Dhungana, Yogesh ; Huang, Hongling ; KC, Anil ; Shi, Hao ; Rankin, Sherri ; Brown, Scott A. ; Johnson, Amanda ; Wakefield, Randall ; Robinson, Camenzind G. ; Liu, Xueyan ; Sheyn, Anthony ; Yu, Jiyang ; Jackowski, Suzanne ; Chi, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432z-9c131ddc9f0a5bf5100c478283ebbfd845d87bbb901d90e76c659241adc9bf293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>14/19</topic><topic>14/28</topic><topic>631/250/1619/554/1898/1270</topic><topic>631/250/2152/1566/2493</topic><topic>64/60</topic><topic>96/106</topic><topic>96/31</topic><topic>96/95</topic><topic>Bcl-6 protein</topic><topic>Biosynthesis</topic><topic>Cell differentiation</topic><topic>Choline</topic><topic>CXCR5 protein</topic><topic>Differentiation (biology)</topic><topic>Enzymes</topic><topic>Ethanolamine</topic><topic>Genes</topic><topic>Humanities and Social Sciences</topic><topic>Humoral immunity</topic><topic>Immune response (humoral)</topic><topic>Immunity</topic><topic>Infections</topic><topic>Internalization</topic><topic>Kinases</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Localization</topic><topic>Lymphocytes</topic><topic>Lymphocytes B</topic><topic>Lymphocytes T</topic><topic>Metabolism</topic><topic>multidisciplinary</topic><topic>Phosphatidylethanolamine</topic><topic>Phospholipids</topic><topic>Post-transcription</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal transduction</topic><topic>Synthesis</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Guotong</creatorcontrib><creatorcontrib>Guy, Clifford S.</creatorcontrib><creatorcontrib>Chapman, Nicole M.</creatorcontrib><creatorcontrib>Palacios, Gustavo</creatorcontrib><creatorcontrib>Wei, Jun</creatorcontrib><creatorcontrib>Zhou, Peipei</creatorcontrib><creatorcontrib>Long, Lingyun</creatorcontrib><creatorcontrib>Wang, Yong-Dong</creatorcontrib><creatorcontrib>Qian, Chenxi</creatorcontrib><creatorcontrib>Dhungana, Yogesh</creatorcontrib><creatorcontrib>Huang, Hongling</creatorcontrib><creatorcontrib>KC, Anil</creatorcontrib><creatorcontrib>Shi, Hao</creatorcontrib><creatorcontrib>Rankin, Sherri</creatorcontrib><creatorcontrib>Brown, Scott A.</creatorcontrib><creatorcontrib>Johnson, Amanda</creatorcontrib><creatorcontrib>Wakefield, Randall</creatorcontrib><creatorcontrib>Robinson, Camenzind G.</creatorcontrib><creatorcontrib>Liu, Xueyan</creatorcontrib><creatorcontrib>Sheyn, Anthony</creatorcontrib><creatorcontrib>Yu, Jiyang</creatorcontrib><creatorcontrib>Jackowski, Suzanne</creatorcontrib><creatorcontrib>Chi, Hongbo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Guotong</au><au>Guy, Clifford S.</au><au>Chapman, Nicole M.</au><au>Palacios, Gustavo</au><au>Wei, Jun</au><au>Zhou, Peipei</au><au>Long, Lingyun</au><au>Wang, Yong-Dong</au><au>Qian, Chenxi</au><au>Dhungana, Yogesh</au><au>Huang, Hongling</au><au>KC, Anil</au><au>Shi, Hao</au><au>Rankin, Sherri</au><au>Brown, Scott A.</au><au>Johnson, Amanda</au><au>Wakefield, Randall</au><au>Robinson, Camenzind G.</au><au>Liu, Xueyan</au><au>Sheyn, Anthony</au><au>Yu, Jiyang</au><au>Jackowski, Suzanne</au><au>Chi, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2021-07-29</date><risdate>2021</risdate><volume>595</volume><issue>7869</issue><spage>724</spage><epage>729</epage><pages>724-729</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>T follicular helper (T
FH
) cells are crucial for B cell-mediated humoral immunity
1
. Although transcription factors such as BCL6 drive the differentiation of T
FH
cells
2
,
3
, it is unclear whether and how post-transcriptional and metabolic programs enforce T
FH
cell programming. Here we show that the cytidine diphosphate (CDP)–ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of T
FH
cells and humoral immunity. Using in vivo CRISPR–Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI—enzymes in the CDP–ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)—as selective post-transcriptional regulators of T
FH
cell differentiation that act by promoting the surface expression and functional effects of CXCR5. T
FH
cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP–ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of
Pcyt2
, but not of
Pcyt1a
(which mediates the CDP–choline pathway), in activated T cells impairs the differentiation of T
FH
cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on
Pcyt2
. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for T
FH
cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.
Enzymes in the cytidine diphosphate–ethanolamine metabolic pathway, which promotes de novo synthesis of phosphatidylethanolamine, are shown to act as post-transcriptional mediators of the differentiation of T follicular helper (T
FH
) cells, by regulating the chemokine receptor CXCR5.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34234346</pmid><doi>10.1038/s41586-021-03692-z</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7277-692X</orcidid><orcidid>https://orcid.org/0000-0002-9997-2496</orcidid><orcidid>https://orcid.org/0000-0002-6233-8109</orcidid><orcidid>https://orcid.org/0000-0003-3629-4330</orcidid><orcidid>https://orcid.org/0000-0002-6855-1429</orcidid><orcidid>https://orcid.org/0000-0002-2796-629X</orcidid><orcidid>https://orcid.org/0000-0001-8751-9216</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-07, Vol.595 (7869), p.724-729 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8448202 |
source | Nature; Alma/SFX Local Collection |
subjects | 13 14/19 14/28 631/250/1619/554/1898/1270 631/250/2152/1566/2493 64/60 96/106 96/31 96/95 Bcl-6 protein Biosynthesis Cell differentiation Choline CXCR5 protein Differentiation (biology) Enzymes Ethanolamine Genes Humanities and Social Sciences Humoral immunity Immune response (humoral) Immunity Infections Internalization Kinases Lipid metabolism Lipids Localization Lymphocytes Lymphocytes B Lymphocytes T Metabolism multidisciplinary Phosphatidylethanolamine Phospholipids Post-transcription Science Science (multidisciplinary) Signal transduction Synthesis Transcription factors |
title | Metabolic control of TFH cells and humoral immunity by phosphatidylethanolamine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20control%20of%20TFH%20cells%20and%20humoral%20immunity%20by%20phosphatidylethanolamine&rft.jtitle=Nature%20(London)&rft.au=Fu,%20Guotong&rft.date=2021-07-29&rft.volume=595&rft.issue=7869&rft.spage=724&rft.epage=729&rft.pages=724-729&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03692-z&rft_dat=%3Cproquest_pubme%3E2556441946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556441946&rft_id=info:pmid/34234346&rfr_iscdi=true |