Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus
Neutrophil extracellular traps (NETs) are antimicrobial cobweb‐structured materials produced by immune cells for clearance of pathogens in the body, but are paradoxically associated with biofilm formation and exacerbated lung infections. To provide a better materials perspective on the pleiotropic r...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2021-09, Vol.8 (17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 8 |
creator | Yang, Ting Yang, Shi Ahmed, Tasdiq Nguyen, Katherine Yu, Jinlong Cao, Xuejun Zan, Rui Zhang, Xiaonong Shen, Hao Fay, Meredith E. Williams, Evelyn Kendall Lam, Wilbur A. VanEpps, Jeremy Scott Takayama, Shuichi Song, Yang |
description | Neutrophil extracellular traps (NETs) are antimicrobial cobweb‐structured materials produced by immune cells for clearance of pathogens in the body, but are paradoxically associated with biofilm formation and exacerbated lung infections. To provide a better materials perspective on the pleiotropic roles played by NETs at diverse compositions/concentrations, a NETs‐like material (called “microwebs”, abbreviated as μwebs) is synthesized for decoding the antimicrobial activity of NETs against Staphylococcus aureus in infection‐relevant conditions. It is shown that μwebs composed of low‐to‐intermediate concentrations of DNA‐histone complexes successfully trap and inhibit S. aureus growth and biofilm formation. However, with growing concentrations and histone proportions, the resulting microwebs appear gel‐like structures accompanied by reduced antimicrobial activity that can even promote the formation of S. aureus biofilms. The simplified model of NETs provides materials‐based evidence on NETs‐relevant pathology in the development of biofilms.
“Microwebs”, a web‐like DNA structure mimicking the neutrophil extracellular traps (NETs) shows antimicrobial activity against Staphylococcus aureus at physiological conditions, but it paradoxically induces biofilm formation at higher concentrations. This paradigm can be explained under the framework of electrostatic interactions between DNA, histone, and bacterial cell walls, which provides a materials‐based insight for understanding the NETs‐relevant pathology in the biofilm disease. |
doi_str_mv | 10.1002/admi.202100717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8447838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574739392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4457-1c3bbb34c4e71726a2044c12b9af26a3129dcfead19519da267451a8d39a78f03</originalsourceid><addsrcrecordid>eNqFkU1PwjAcxhujEYJcPS_x4gXs2-h6MVlAhQT0oJ6bruugZFtx3SDc_Ah-Rj-JJRB8uXhq_-3vedKnDwCXCPYRhPhGpoXpY4j9wBA7AW2M-KDHSAhPf-xboOvcEkKIEEY4IuegRWhIYUhwGyQj6-Rcf75_jPRKl6ku6yAua1MYVdnEyDyIVW3Wpt4GNgtGj7Enx8bVttTBbMdsdOKCeC5N6erguZarxTa3yirV-OOm0o27AGeZzJ3uHtYOeL2_exmOe9Onh8kwnvYUpSHrIUWSJCFUUe3D4IHEkFKFcMJl5ieCME9VpmWKeIh4KvGA0RDJKCVcsiiDpANu976rJil0qnyUSuZiVZlCVlthpRG_b0qzEHO7FhGlLCKRN7g-GFT2rdGuFoVxSue5LLVtnMAho4xwwrFHr_6gS9tUpY-3o9AAQ8Spp_p7yv-Tc5XOjo9BUOwaFLsGxbFBL-B7wcbkevsPLeLRbPKt_QKY16Co</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571620194</pqid></control><display><type>article</type><title>Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Ting ; Yang, Shi ; Ahmed, Tasdiq ; Nguyen, Katherine ; Yu, Jinlong ; Cao, Xuejun ; Zan, Rui ; Zhang, Xiaonong ; Shen, Hao ; Fay, Meredith E. ; Williams, Evelyn Kendall ; Lam, Wilbur A. ; VanEpps, Jeremy Scott ; Takayama, Shuichi ; Song, Yang</creator><creatorcontrib>Yang, Ting ; Yang, Shi ; Ahmed, Tasdiq ; Nguyen, Katherine ; Yu, Jinlong ; Cao, Xuejun ; Zan, Rui ; Zhang, Xiaonong ; Shen, Hao ; Fay, Meredith E. ; Williams, Evelyn Kendall ; Lam, Wilbur A. ; VanEpps, Jeremy Scott ; Takayama, Shuichi ; Song, Yang</creatorcontrib><description>Neutrophil extracellular traps (NETs) are antimicrobial cobweb‐structured materials produced by immune cells for clearance of pathogens in the body, but are paradoxically associated with biofilm formation and exacerbated lung infections. To provide a better materials perspective on the pleiotropic roles played by NETs at diverse compositions/concentrations, a NETs‐like material (called “microwebs”, abbreviated as μwebs) is synthesized for decoding the antimicrobial activity of NETs against Staphylococcus aureus in infection‐relevant conditions. It is shown that μwebs composed of low‐to‐intermediate concentrations of DNA‐histone complexes successfully trap and inhibit S. aureus growth and biofilm formation. However, with growing concentrations and histone proportions, the resulting microwebs appear gel‐like structures accompanied by reduced antimicrobial activity that can even promote the formation of S. aureus biofilms. The simplified model of NETs provides materials‐based evidence on NETs‐relevant pathology in the development of biofilms.
“Microwebs”, a web‐like DNA structure mimicking the neutrophil extracellular traps (NETs) shows antimicrobial activity against Staphylococcus aureus at physiological conditions, but it paradoxically induces biofilm formation at higher concentrations. This paradigm can be explained under the framework of electrostatic interactions between DNA, histone, and bacterial cell walls, which provides a materials‐based insight for understanding the NETs‐relevant pathology in the biofilm disease.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202100717</identifier><identifier>PMID: 34540532</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Antiinfectives and antibacterials ; Antimicrobial agents ; Biofilms ; biomimetics ; Histones ; Immune system ; microwebs ; neutrophil extracellular traps ; Staphylococcus aureus</subject><ispartof>Advanced materials interfaces, 2021-09, Vol.8 (17), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4457-1c3bbb34c4e71726a2044c12b9af26a3129dcfead19519da267451a8d39a78f03</citedby><cites>FETCH-LOGICAL-c4457-1c3bbb34c4e71726a2044c12b9af26a3129dcfead19519da267451a8d39a78f03</cites><orcidid>0000-0002-4914-8490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202100717$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202100717$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Yang, Shi</creatorcontrib><creatorcontrib>Ahmed, Tasdiq</creatorcontrib><creatorcontrib>Nguyen, Katherine</creatorcontrib><creatorcontrib>Yu, Jinlong</creatorcontrib><creatorcontrib>Cao, Xuejun</creatorcontrib><creatorcontrib>Zan, Rui</creatorcontrib><creatorcontrib>Zhang, Xiaonong</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Fay, Meredith E.</creatorcontrib><creatorcontrib>Williams, Evelyn Kendall</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><creatorcontrib>VanEpps, Jeremy Scott</creatorcontrib><creatorcontrib>Takayama, Shuichi</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><title>Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus</title><title>Advanced materials interfaces</title><description>Neutrophil extracellular traps (NETs) are antimicrobial cobweb‐structured materials produced by immune cells for clearance of pathogens in the body, but are paradoxically associated with biofilm formation and exacerbated lung infections. To provide a better materials perspective on the pleiotropic roles played by NETs at diverse compositions/concentrations, a NETs‐like material (called “microwebs”, abbreviated as μwebs) is synthesized for decoding the antimicrobial activity of NETs against Staphylococcus aureus in infection‐relevant conditions. It is shown that μwebs composed of low‐to‐intermediate concentrations of DNA‐histone complexes successfully trap and inhibit S. aureus growth and biofilm formation. However, with growing concentrations and histone proportions, the resulting microwebs appear gel‐like structures accompanied by reduced antimicrobial activity that can even promote the formation of S. aureus biofilms. The simplified model of NETs provides materials‐based evidence on NETs‐relevant pathology in the development of biofilms.
“Microwebs”, a web‐like DNA structure mimicking the neutrophil extracellular traps (NETs) shows antimicrobial activity against Staphylococcus aureus at physiological conditions, but it paradoxically induces biofilm formation at higher concentrations. This paradigm can be explained under the framework of electrostatic interactions between DNA, histone, and bacterial cell walls, which provides a materials‐based insight for understanding the NETs‐relevant pathology in the biofilm disease.</description><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Biofilms</subject><subject>biomimetics</subject><subject>Histones</subject><subject>Immune system</subject><subject>microwebs</subject><subject>neutrophil extracellular traps</subject><subject>Staphylococcus aureus</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU1PwjAcxhujEYJcPS_x4gXs2-h6MVlAhQT0oJ6bruugZFtx3SDc_Ah-Rj-JJRB8uXhq_-3vedKnDwCXCPYRhPhGpoXpY4j9wBA7AW2M-KDHSAhPf-xboOvcEkKIEEY4IuegRWhIYUhwGyQj6-Rcf75_jPRKl6ku6yAua1MYVdnEyDyIVW3Wpt4GNgtGj7Enx8bVttTBbMdsdOKCeC5N6erguZarxTa3yirV-OOm0o27AGeZzJ3uHtYOeL2_exmOe9Onh8kwnvYUpSHrIUWSJCFUUe3D4IHEkFKFcMJl5ieCME9VpmWKeIh4KvGA0RDJKCVcsiiDpANu976rJil0qnyUSuZiVZlCVlthpRG_b0qzEHO7FhGlLCKRN7g-GFT2rdGuFoVxSue5LLVtnMAho4xwwrFHr_6gS9tUpY-3o9AAQ8Spp_p7yv-Tc5XOjo9BUOwaFLsGxbFBL-B7wcbkevsPLeLRbPKt_QKY16Co</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yang, Ting</creator><creator>Yang, Shi</creator><creator>Ahmed, Tasdiq</creator><creator>Nguyen, Katherine</creator><creator>Yu, Jinlong</creator><creator>Cao, Xuejun</creator><creator>Zan, Rui</creator><creator>Zhang, Xiaonong</creator><creator>Shen, Hao</creator><creator>Fay, Meredith E.</creator><creator>Williams, Evelyn Kendall</creator><creator>Lam, Wilbur A.</creator><creator>VanEpps, Jeremy Scott</creator><creator>Takayama, Shuichi</creator><creator>Song, Yang</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4914-8490</orcidid></search><sort><creationdate>20210901</creationdate><title>Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus</title><author>Yang, Ting ; Yang, Shi ; Ahmed, Tasdiq ; Nguyen, Katherine ; Yu, Jinlong ; Cao, Xuejun ; Zan, Rui ; Zhang, Xiaonong ; Shen, Hao ; Fay, Meredith E. ; Williams, Evelyn Kendall ; Lam, Wilbur A. ; VanEpps, Jeremy Scott ; Takayama, Shuichi ; Song, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4457-1c3bbb34c4e71726a2044c12b9af26a3129dcfead19519da267451a8d39a78f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Biofilms</topic><topic>biomimetics</topic><topic>Histones</topic><topic>Immune system</topic><topic>microwebs</topic><topic>neutrophil extracellular traps</topic><topic>Staphylococcus aureus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ting</creatorcontrib><creatorcontrib>Yang, Shi</creatorcontrib><creatorcontrib>Ahmed, Tasdiq</creatorcontrib><creatorcontrib>Nguyen, Katherine</creatorcontrib><creatorcontrib>Yu, Jinlong</creatorcontrib><creatorcontrib>Cao, Xuejun</creatorcontrib><creatorcontrib>Zan, Rui</creatorcontrib><creatorcontrib>Zhang, Xiaonong</creatorcontrib><creatorcontrib>Shen, Hao</creatorcontrib><creatorcontrib>Fay, Meredith E.</creatorcontrib><creatorcontrib>Williams, Evelyn Kendall</creatorcontrib><creatorcontrib>Lam, Wilbur A.</creatorcontrib><creatorcontrib>VanEpps, Jeremy Scott</creatorcontrib><creatorcontrib>Takayama, Shuichi</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ting</au><au>Yang, Shi</au><au>Ahmed, Tasdiq</au><au>Nguyen, Katherine</au><au>Yu, Jinlong</au><au>Cao, Xuejun</au><au>Zan, Rui</au><au>Zhang, Xiaonong</au><au>Shen, Hao</au><au>Fay, Meredith E.</au><au>Williams, Evelyn Kendall</au><au>Lam, Wilbur A.</au><au>VanEpps, Jeremy Scott</au><au>Takayama, Shuichi</au><au>Song, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus</atitle><jtitle>Advanced materials interfaces</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>8</volume><issue>17</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Neutrophil extracellular traps (NETs) are antimicrobial cobweb‐structured materials produced by immune cells for clearance of pathogens in the body, but are paradoxically associated with biofilm formation and exacerbated lung infections. To provide a better materials perspective on the pleiotropic roles played by NETs at diverse compositions/concentrations, a NETs‐like material (called “microwebs”, abbreviated as μwebs) is synthesized for decoding the antimicrobial activity of NETs against Staphylococcus aureus in infection‐relevant conditions. It is shown that μwebs composed of low‐to‐intermediate concentrations of DNA‐histone complexes successfully trap and inhibit S. aureus growth and biofilm formation. However, with growing concentrations and histone proportions, the resulting microwebs appear gel‐like structures accompanied by reduced antimicrobial activity that can even promote the formation of S. aureus biofilms. The simplified model of NETs provides materials‐based evidence on NETs‐relevant pathology in the development of biofilms.
“Microwebs”, a web‐like DNA structure mimicking the neutrophil extracellular traps (NETs) shows antimicrobial activity against Staphylococcus aureus at physiological conditions, but it paradoxically induces biofilm formation at higher concentrations. This paradigm can be explained under the framework of electrostatic interactions between DNA, histone, and bacterial cell walls, which provides a materials‐based insight for understanding the NETs‐relevant pathology in the biofilm disease.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><pmid>34540532</pmid><doi>10.1002/admi.202100717</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4914-8490</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2021-09, Vol.8 (17), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8447838 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antiinfectives and antibacterials Antimicrobial agents Biofilms biomimetics Histones Immune system microwebs neutrophil extracellular traps Staphylococcus aureus |
title | Dosage‐Dependent Antimicrobial Activity of DNA‐Histone Microwebs Against Staphylococcus Aureus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dosage%E2%80%90Dependent%20Antimicrobial%20Activity%20of%20DNA%E2%80%90Histone%20Microwebs%20Against%20Staphylococcus%20Aureus&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Yang,%20Ting&rft.date=2021-09-01&rft.volume=8&rft.issue=17&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202100717&rft_dat=%3Cproquest_pubme%3E2574739392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571620194&rft_id=info:pmid/34540532&rfr_iscdi=true |