Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant

Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2021-10, Vol.264, p.112609, Article 112609
Hauptverfasser: Siegmann, Bastian, Cendrero-Mateo, Maria Pilar, Cogliati, Sergio, Damm, Alexander, Gamon, John, Herrera, David, Jedmowski, Christoph, Junker-Frohn, Laura Verena, Kraska, Thorsten, Muller, Onno, Rademske, Patrick, van der Tol, Christiaan, Quiros-Vargas, Juan, Yang, Peiqi, Rascher, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112609
container_title Remote sensing of environment
container_volume 264
creator Siegmann, Bastian
Cendrero-Mateo, Maria Pilar
Cogliati, Sergio
Damm, Alexander
Gamon, John
Herrera, David
Jedmowski, Christoph
Junker-Frohn, Laura Verena
Kraska, Thorsten
Muller, Onno
Rademske, Patrick
van der Tol, Christiaan
Quiros-Vargas, Juan
Yang, Peiqi
Rascher, Uwe
description Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction (fesc) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine fesc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy (SIF760canopy) to leaf level (SIF760leaf). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine fesc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating fesc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency (εSIF) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency. •The far-red SIF (SIF760) escape fraction (fesc) strongly depends on the crop type•Crops with complex canopy geometries show more spatio-temporal variability in fesc•Detection of diurnal variations in plant physiology from airborne SIF760 maps
doi_str_mv 10.1016/j.rse.2021.112609
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8447579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425721003291</els_id><sourcerecordid>2580075338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-bf9795d52be81c08e36086c3693b33e9231ed378a03c49830e3aa2bda33cbf933</originalsourceid><addsrcrecordid>eNp9UcuOFCEUJUbjtKMf4MaQuK4WiqqCiomJGR9jMokudE0ouHTToaEHqJ70p_l3UvY40Y0bHuE8Lucg9JKSNSV0eLNbpwzrlrR0TWk7kPERWlHBx4Zw0j1GK0JY13Rtzy_Qs5x3hNBecPoUXbBuIO3Q9yv080O8C1kr78IGR4utSk0Cg3P09eSCmXW96a2PKR62J--x9XNMkDUEDQvDOGshQShYV0jGNsU91irEwwmXiD0oW5cjeDznxURVxpyC8tioonCGgpW-nd3iOlXKFrByaYopAHZ7tVk4-QC6VF0okPD16ZtXoTxHT6zyGV7c75fox6eP36-um5uvn79cvb9pdMfH0kx25GNv-nYCQTURwAYiBs2GkU2MwdgyCoZxoQjT3SgYAaZUOxnFmK5cxi7Ru7PuYZ72YOq_S1JeHlIdLp1kVE7--xLcVm7iUYqu4z0fq8Dre4EUb2fIRe7i7wCybHtBCO8ZExVFz6iaYs4J7IMDJXJpW-5kbVsubctz25Xz6u_RHhh_6q2At2cA1ICODpLM2i3FmRq3LtJE9x_5X09KwAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580075338</pqid></control><display><type>article</type><title>Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Siegmann, Bastian ; Cendrero-Mateo, Maria Pilar ; Cogliati, Sergio ; Damm, Alexander ; Gamon, John ; Herrera, David ; Jedmowski, Christoph ; Junker-Frohn, Laura Verena ; Kraska, Thorsten ; Muller, Onno ; Rademske, Patrick ; van der Tol, Christiaan ; Quiros-Vargas, Juan ; Yang, Peiqi ; Rascher, Uwe</creator><creatorcontrib>Siegmann, Bastian ; Cendrero-Mateo, Maria Pilar ; Cogliati, Sergio ; Damm, Alexander ; Gamon, John ; Herrera, David ; Jedmowski, Christoph ; Junker-Frohn, Laura Verena ; Kraska, Thorsten ; Muller, Onno ; Rademske, Patrick ; van der Tol, Christiaan ; Quiros-Vargas, Juan ; Yang, Peiqi ; Rascher, Uwe</creatorcontrib><description>Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction (fesc) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine fesc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy (SIF760canopy) to leaf level (SIF760leaf). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine fesc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating fesc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency (εSIF) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency. •The far-red SIF (SIF760) escape fraction (fesc) strongly depends on the crop type•Crops with complex canopy geometries show more spatio-temporal variability in fesc•Detection of diurnal variations in plant physiology from airborne SIF760 maps</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2021.112609</identifier><identifier>PMID: 34602655</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Airborne sensing ; Canopies ; Chlorophyll ; Crops ; Data acquisition ; Datasets ; Diurnal course ; Diurnal variations ; Dynamic structural analysis ; FCVI ; Fluorescence ; Fluorescence correction vegetation index ; Fluorescence escape fraction ; Fruit trees ; Fruits ; Herbivores ; HyPlant ; Image acquisition ; Imaging spectrometers ; Leaves ; Mathematical analysis ; Normalizing ; Photosynthesis ; Photosynthetically active radiation ; Physiological effects ; Primary production ; Radiation ; Remote sensing ; Scattering ; SIF ; Solar-induced chlorophyll fluorescence ; Spatial analysis ; Sugar beets ; Trees ; Triticum aestivum ; Vegetation ; Vegetation index ; Wheat ; Winter wheat</subject><ispartof>Remote sensing of environment, 2021-10, Vol.264, p.112609, Article 112609</ispartof><rights>2021 The Authors</rights><rights>2021 The Authors.</rights><rights>Copyright Elsevier BV Oct 2021</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-bf9795d52be81c08e36086c3693b33e9231ed378a03c49830e3aa2bda33cbf933</citedby><cites>FETCH-LOGICAL-c479t-bf9795d52be81c08e36086c3693b33e9231ed378a03c49830e3aa2bda33cbf933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2021.112609$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34602655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siegmann, Bastian</creatorcontrib><creatorcontrib>Cendrero-Mateo, Maria Pilar</creatorcontrib><creatorcontrib>Cogliati, Sergio</creatorcontrib><creatorcontrib>Damm, Alexander</creatorcontrib><creatorcontrib>Gamon, John</creatorcontrib><creatorcontrib>Herrera, David</creatorcontrib><creatorcontrib>Jedmowski, Christoph</creatorcontrib><creatorcontrib>Junker-Frohn, Laura Verena</creatorcontrib><creatorcontrib>Kraska, Thorsten</creatorcontrib><creatorcontrib>Muller, Onno</creatorcontrib><creatorcontrib>Rademske, Patrick</creatorcontrib><creatorcontrib>van der Tol, Christiaan</creatorcontrib><creatorcontrib>Quiros-Vargas, Juan</creatorcontrib><creatorcontrib>Yang, Peiqi</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><title>Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant</title><title>Remote sensing of environment</title><addtitle>Remote Sens Environ</addtitle><description>Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction (fesc) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine fesc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy (SIF760canopy) to leaf level (SIF760leaf). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine fesc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating fesc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency (εSIF) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency. •The far-red SIF (SIF760) escape fraction (fesc) strongly depends on the crop type•Crops with complex canopy geometries show more spatio-temporal variability in fesc•Detection of diurnal variations in plant physiology from airborne SIF760 maps</description><subject>Airborne sensing</subject><subject>Canopies</subject><subject>Chlorophyll</subject><subject>Crops</subject><subject>Data acquisition</subject><subject>Datasets</subject><subject>Diurnal course</subject><subject>Diurnal variations</subject><subject>Dynamic structural analysis</subject><subject>FCVI</subject><subject>Fluorescence</subject><subject>Fluorescence correction vegetation index</subject><subject>Fluorescence escape fraction</subject><subject>Fruit trees</subject><subject>Fruits</subject><subject>Herbivores</subject><subject>HyPlant</subject><subject>Image acquisition</subject><subject>Imaging spectrometers</subject><subject>Leaves</subject><subject>Mathematical analysis</subject><subject>Normalizing</subject><subject>Photosynthesis</subject><subject>Photosynthetically active radiation</subject><subject>Physiological effects</subject><subject>Primary production</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Scattering</subject><subject>SIF</subject><subject>Solar-induced chlorophyll fluorescence</subject><subject>Spatial analysis</subject><subject>Sugar beets</subject><subject>Trees</subject><subject>Triticum aestivum</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Wheat</subject><subject>Winter wheat</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UcuOFCEUJUbjtKMf4MaQuK4WiqqCiomJGR9jMokudE0ouHTToaEHqJ70p_l3UvY40Y0bHuE8Lucg9JKSNSV0eLNbpwzrlrR0TWk7kPERWlHBx4Zw0j1GK0JY13Rtzy_Qs5x3hNBecPoUXbBuIO3Q9yv080O8C1kr78IGR4utSk0Cg3P09eSCmXW96a2PKR62J--x9XNMkDUEDQvDOGshQShYV0jGNsU91irEwwmXiD0oW5cjeDznxURVxpyC8tioonCGgpW-nd3iOlXKFrByaYopAHZ7tVk4-QC6VF0okPD16ZtXoTxHT6zyGV7c75fox6eP36-um5uvn79cvb9pdMfH0kx25GNv-nYCQTURwAYiBs2GkU2MwdgyCoZxoQjT3SgYAaZUOxnFmK5cxi7Ru7PuYZ72YOq_S1JeHlIdLp1kVE7--xLcVm7iUYqu4z0fq8Dre4EUb2fIRe7i7wCybHtBCO8ZExVFz6iaYs4J7IMDJXJpW-5kbVsubctz25Xz6u_RHhh_6q2At2cA1ICODpLM2i3FmRq3LtJE9x_5X09KwAw</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Siegmann, Bastian</creator><creator>Cendrero-Mateo, Maria Pilar</creator><creator>Cogliati, Sergio</creator><creator>Damm, Alexander</creator><creator>Gamon, John</creator><creator>Herrera, David</creator><creator>Jedmowski, Christoph</creator><creator>Junker-Frohn, Laura Verena</creator><creator>Kraska, Thorsten</creator><creator>Muller, Onno</creator><creator>Rademske, Patrick</creator><creator>van der Tol, Christiaan</creator><creator>Quiros-Vargas, Juan</creator><creator>Yang, Peiqi</creator><creator>Rascher, Uwe</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>American Elsevier Pub. Co</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>202110</creationdate><title>Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant</title><author>Siegmann, Bastian ; Cendrero-Mateo, Maria Pilar ; Cogliati, Sergio ; Damm, Alexander ; Gamon, John ; Herrera, David ; Jedmowski, Christoph ; Junker-Frohn, Laura Verena ; Kraska, Thorsten ; Muller, Onno ; Rademske, Patrick ; van der Tol, Christiaan ; Quiros-Vargas, Juan ; Yang, Peiqi ; Rascher, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-bf9795d52be81c08e36086c3693b33e9231ed378a03c49830e3aa2bda33cbf933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airborne sensing</topic><topic>Canopies</topic><topic>Chlorophyll</topic><topic>Crops</topic><topic>Data acquisition</topic><topic>Datasets</topic><topic>Diurnal course</topic><topic>Diurnal variations</topic><topic>Dynamic structural analysis</topic><topic>FCVI</topic><topic>Fluorescence</topic><topic>Fluorescence correction vegetation index</topic><topic>Fluorescence escape fraction</topic><topic>Fruit trees</topic><topic>Fruits</topic><topic>Herbivores</topic><topic>HyPlant</topic><topic>Image acquisition</topic><topic>Imaging spectrometers</topic><topic>Leaves</topic><topic>Mathematical analysis</topic><topic>Normalizing</topic><topic>Photosynthesis</topic><topic>Photosynthetically active radiation</topic><topic>Physiological effects</topic><topic>Primary production</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Scattering</topic><topic>SIF</topic><topic>Solar-induced chlorophyll fluorescence</topic><topic>Spatial analysis</topic><topic>Sugar beets</topic><topic>Trees</topic><topic>Triticum aestivum</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Wheat</topic><topic>Winter wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegmann, Bastian</creatorcontrib><creatorcontrib>Cendrero-Mateo, Maria Pilar</creatorcontrib><creatorcontrib>Cogliati, Sergio</creatorcontrib><creatorcontrib>Damm, Alexander</creatorcontrib><creatorcontrib>Gamon, John</creatorcontrib><creatorcontrib>Herrera, David</creatorcontrib><creatorcontrib>Jedmowski, Christoph</creatorcontrib><creatorcontrib>Junker-Frohn, Laura Verena</creatorcontrib><creatorcontrib>Kraska, Thorsten</creatorcontrib><creatorcontrib>Muller, Onno</creatorcontrib><creatorcontrib>Rademske, Patrick</creatorcontrib><creatorcontrib>van der Tol, Christiaan</creatorcontrib><creatorcontrib>Quiros-Vargas, Juan</creatorcontrib><creatorcontrib>Yang, Peiqi</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegmann, Bastian</au><au>Cendrero-Mateo, Maria Pilar</au><au>Cogliati, Sergio</au><au>Damm, Alexander</au><au>Gamon, John</au><au>Herrera, David</au><au>Jedmowski, Christoph</au><au>Junker-Frohn, Laura Verena</au><au>Kraska, Thorsten</au><au>Muller, Onno</au><au>Rademske, Patrick</au><au>van der Tol, Christiaan</au><au>Quiros-Vargas, Juan</au><au>Yang, Peiqi</au><au>Rascher, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant</atitle><jtitle>Remote sensing of environment</jtitle><addtitle>Remote Sens Environ</addtitle><date>2021-10</date><risdate>2021</risdate><volume>264</volume><spage>112609</spage><pages>112609-</pages><artnum>112609</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Remote sensing-based measurements of solar-induced chlorophyll fluorescence (SIF) are useful for assessing plant functioning at different spatial and temporal scales. SIF is the most direct measure of photosynthesis and is therefore considered important to advance capacity for the monitoring of gross primary production (GPP) while it has also been suggested that its yield facilitates the early detection of vegetation stress. However, due to the influence of different confounding effects, the apparent SIF signal measured at canopy level differs from the fluorescence emitted at leaf level, which makes its physiological interpretation challenging. One of these effects is the scattering of SIF emitted from leaves on its way through the canopy. The escape fraction (fesc) describes the scattering of SIF within the canopy and corresponds to the ratio of apparent SIF at canopy level to SIF at leaf level. In the present study, the fluorescence correction vegetation index (FCVI) was used to determine fesc of far-red SIF for three structurally different crops (sugar beet, winter wheat, and fruit trees) from a diurnal data set recorded by the airborne imaging spectrometer HyPlant. This unique data set, for the first time, allowed a joint analysis of spatial and temporal dynamics of structural effects and thus the downscaling of far-red SIF from canopy (SIF760canopy) to leaf level (SIF760leaf). For a homogeneous crop such as winter wheat, it seems to be sufficient to determine fesc once a day to reliably scale SIF760 from canopy to leaf level. In contrast, for more complex canopies such as fruit trees, calculating fesc for each observation time throughout the day is strongly recommended. The compensation for structural effects, in combination with normalizing SIF760 to remove the effect of incoming radiation, further allowed the estimation of SIF emission efficiency (εSIF) at leaf level, a parameter directly related to the diurnal variations of plant photosynthetic efficiency. •The far-red SIF (SIF760) escape fraction (fesc) strongly depends on the crop type•Crops with complex canopy geometries show more spatio-temporal variability in fesc•Detection of diurnal variations in plant physiology from airborne SIF760 maps</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34602655</pmid><doi>10.1016/j.rse.2021.112609</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2021-10, Vol.264, p.112609, Article 112609
issn 0034-4257
1879-0704
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8447579
source Elsevier ScienceDirect Journals Complete
subjects Airborne sensing
Canopies
Chlorophyll
Crops
Data acquisition
Datasets
Diurnal course
Diurnal variations
Dynamic structural analysis
FCVI
Fluorescence
Fluorescence correction vegetation index
Fluorescence escape fraction
Fruit trees
Fruits
Herbivores
HyPlant
Image acquisition
Imaging spectrometers
Leaves
Mathematical analysis
Normalizing
Photosynthesis
Photosynthetically active radiation
Physiological effects
Primary production
Radiation
Remote sensing
Scattering
SIF
Solar-induced chlorophyll fluorescence
Spatial analysis
Sugar beets
Trees
Triticum aestivum
Vegetation
Vegetation index
Wheat
Winter wheat
title Downscaling of far-red solar-induced chlorophyll fluorescence of different crops from canopy to leaf level using a diurnal data set acquired by the airborne imaging spectrometer HyPlant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downscaling%20of%20far-red%20solar-induced%20chlorophyll%20fluorescence%20of%20different%20crops%20from%20canopy%20to%20leaf%20level%20using%20a%20diurnal%20data%20set%20acquired%20by%20the%20airborne%20imaging%20spectrometer%20HyPlant&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Siegmann,%20Bastian&rft.date=2021-10&rft.volume=264&rft.spage=112609&rft.pages=112609-&rft.artnum=112609&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2021.112609&rft_dat=%3Cproquest_pubme%3E2580075338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580075338&rft_id=info:pmid/34602655&rft_els_id=S0034425721003291&rfr_iscdi=true