Modeling turbulent transport of aerosols inside rooms using eddy diffusivity

One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indoor air 2021-11, Vol.31 (6), p.1886-1895
Hauptverfasser: Venkatram, Akula, Weil, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1895
container_issue 6
container_start_page 1886
container_title Indoor air
container_volume 31
creator Venkatram, Akula
Weil, Jeffrey
description One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria.
doi_str_mv 10.1111/ina.12901
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8446944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551208954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEYmNw4B9U4gKHbvlo2uaCNE18TBpwgXOUNsnI1DYjaYf678nohAQSvliWH7-y_QJwieAUhZiZRkwRZhAdgTFKIYxhmubHYAwZpHHKkmwEzrzfQIgywsgpGJEEU4xJNgarJytVZZp11Hau6CrVtFHrROO31rWR1ZFQznpb-cg03kgVOWtrH3V-P6Kk7CNptA7lzrT9OTjRovLq4pAn4O3-7nXxGK9eHpaL-SouEwxRjElOsyKHEjFWUlpmaUqLXKeaalESomUSepommEilKdNFTpVEMEsLSLBSBZmA20F32xW1kmVY2omKb52pheu5FYb_7jTmna_tjudJEt6RBIHrg4CzH53yLa-NL1VViUbZznNMKcIwZ3SPXv1BN7ZzTTgvUDnOCCSMBupmoMrwLe-U_lkGQb73iAeP-LdHgZ0N7KepVP8_yJfP82HiC5F1kq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582730395</pqid></control><display><type>article</type><title>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Venkatram, Akula ; Weil, Jeffrey</creator><creatorcontrib>Venkatram, Akula ; Weil, Jeffrey</creatorcontrib><description>One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria.</description><identifier>ISSN: 0905-6947</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12901</identifier><identifier>PMID: 34252237</identifier><language>eng</language><publisher>Malden: Hindawi Limited</publisher><subject>Aerosols ; airborne transmission ; Concentration gradient ; Confined spaces ; Conservation equations ; Diffusivity ; Dosage ; eddy diffusivity ; Empirical analysis ; gradient transport ; Indoor air pollution ; Modelling ; Original ; Pollutants ; Pollution dispersion ; turbulent transport in rooms ; Viruses ; Vortices</subject><ispartof>Indoor air, 2021-11, Vol.31 (6), p.1886-1895</ispartof><rights>2021 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2021 John Wiley &amp; Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</citedby><cites>FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12901$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12901$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Venkatram, Akula</creatorcontrib><creatorcontrib>Weil, Jeffrey</creatorcontrib><title>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</title><title>Indoor air</title><description>One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria.</description><subject>Aerosols</subject><subject>airborne transmission</subject><subject>Concentration gradient</subject><subject>Confined spaces</subject><subject>Conservation equations</subject><subject>Diffusivity</subject><subject>Dosage</subject><subject>eddy diffusivity</subject><subject>Empirical analysis</subject><subject>gradient transport</subject><subject>Indoor air pollution</subject><subject>Modelling</subject><subject>Original</subject><subject>Pollutants</subject><subject>Pollution dispersion</subject><subject>turbulent transport in rooms</subject><subject>Viruses</subject><subject>Vortices</subject><issn>0905-6947</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PwzAMhiMEYmNw4B9U4gKHbvlo2uaCNE18TBpwgXOUNsnI1DYjaYf678nohAQSvliWH7-y_QJwieAUhZiZRkwRZhAdgTFKIYxhmubHYAwZpHHKkmwEzrzfQIgywsgpGJEEU4xJNgarJytVZZp11Hau6CrVtFHrROO31rWR1ZFQznpb-cg03kgVOWtrH3V-P6Kk7CNptA7lzrT9OTjRovLq4pAn4O3-7nXxGK9eHpaL-SouEwxRjElOsyKHEjFWUlpmaUqLXKeaalESomUSepommEilKdNFTpVEMEsLSLBSBZmA20F32xW1kmVY2omKb52pheu5FYb_7jTmna_tjudJEt6RBIHrg4CzH53yLa-NL1VViUbZznNMKcIwZ3SPXv1BN7ZzTTgvUDnOCCSMBupmoMrwLe-U_lkGQb73iAeP-LdHgZ0N7KepVP8_yJfP82HiC5F1kq8</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Venkatram, Akula</creator><creator>Weil, Jeffrey</creator><general>Hindawi Limited</general><general>John Wiley and Sons Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202111</creationdate><title>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</title><author>Venkatram, Akula ; Weil, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>airborne transmission</topic><topic>Concentration gradient</topic><topic>Confined spaces</topic><topic>Conservation equations</topic><topic>Diffusivity</topic><topic>Dosage</topic><topic>eddy diffusivity</topic><topic>Empirical analysis</topic><topic>gradient transport</topic><topic>Indoor air pollution</topic><topic>Modelling</topic><topic>Original</topic><topic>Pollutants</topic><topic>Pollution dispersion</topic><topic>turbulent transport in rooms</topic><topic>Viruses</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatram, Akula</creatorcontrib><creatorcontrib>Weil, Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatram, Akula</au><au>Weil, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</atitle><jtitle>Indoor air</jtitle><date>2021-11</date><risdate>2021</risdate><volume>31</volume><issue>6</issue><spage>1886</spage><epage>1895</epage><pages>1886-1895</pages><issn>0905-6947</issn><eissn>1600-0668</eissn><abstract>One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria.</abstract><cop>Malden</cop><pub>Hindawi Limited</pub><pmid>34252237</pmid><doi>10.1111/ina.12901</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0905-6947
ispartof Indoor air, 2021-11, Vol.31 (6), p.1886-1895
issn 0905-6947
1600-0668
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8446944
source Wiley Online Library - AutoHoldings Journals
subjects Aerosols
airborne transmission
Concentration gradient
Confined spaces
Conservation equations
Diffusivity
Dosage
eddy diffusivity
Empirical analysis
gradient transport
Indoor air pollution
Modelling
Original
Pollutants
Pollution dispersion
turbulent transport in rooms
Viruses
Vortices
title Modeling turbulent transport of aerosols inside rooms using eddy diffusivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20turbulent%20transport%20of%20aerosols%20inside%20rooms%20using%20eddy%20diffusivity&rft.jtitle=Indoor%20air&rft.au=Venkatram,%20Akula&rft.date=2021-11&rft.volume=31&rft.issue=6&rft.spage=1886&rft.epage=1895&rft.pages=1886-1895&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12901&rft_dat=%3Cproquest_pubme%3E2551208954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582730395&rft_id=info:pmid/34252237&rfr_iscdi=true