Modeling turbulent transport of aerosols inside rooms using eddy diffusivity
One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the...
Gespeichert in:
Veröffentlicht in: | Indoor air 2021-11, Vol.31 (6), p.1886-1895 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1895 |
---|---|
container_issue | 6 |
container_start_page | 1886 |
container_title | Indoor air |
container_volume | 31 |
creator | Venkatram, Akula Weil, Jeffrey |
description | One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria. |
doi_str_mv | 10.1111/ina.12901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8446944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551208954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEYmNw4B9U4gKHbvlo2uaCNE18TBpwgXOUNsnI1DYjaYf678nohAQSvliWH7-y_QJwieAUhZiZRkwRZhAdgTFKIYxhmubHYAwZpHHKkmwEzrzfQIgywsgpGJEEU4xJNgarJytVZZp11Hau6CrVtFHrROO31rWR1ZFQznpb-cg03kgVOWtrH3V-P6Kk7CNptA7lzrT9OTjRovLq4pAn4O3-7nXxGK9eHpaL-SouEwxRjElOsyKHEjFWUlpmaUqLXKeaalESomUSepommEilKdNFTpVEMEsLSLBSBZmA20F32xW1kmVY2omKb52pheu5FYb_7jTmna_tjudJEt6RBIHrg4CzH53yLa-NL1VViUbZznNMKcIwZ3SPXv1BN7ZzTTgvUDnOCCSMBupmoMrwLe-U_lkGQb73iAeP-LdHgZ0N7KepVP8_yJfP82HiC5F1kq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582730395</pqid></control><display><type>article</type><title>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Venkatram, Akula ; Weil, Jeffrey</creator><creatorcontrib>Venkatram, Akula ; Weil, Jeffrey</creatorcontrib><description>One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria.</description><identifier>ISSN: 0905-6947</identifier><identifier>EISSN: 1600-0668</identifier><identifier>DOI: 10.1111/ina.12901</identifier><identifier>PMID: 34252237</identifier><language>eng</language><publisher>Malden: Hindawi Limited</publisher><subject>Aerosols ; airborne transmission ; Concentration gradient ; Confined spaces ; Conservation equations ; Diffusivity ; Dosage ; eddy diffusivity ; Empirical analysis ; gradient transport ; Indoor air pollution ; Modelling ; Original ; Pollutants ; Pollution dispersion ; turbulent transport in rooms ; Viruses ; Vortices</subject><ispartof>Indoor air, 2021-11, Vol.31 (6), p.1886-1895</ispartof><rights>2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>Copyright © 2021 John Wiley & Sons A/S</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</citedby><cites>FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fina.12901$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fina.12901$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Venkatram, Akula</creatorcontrib><creatorcontrib>Weil, Jeffrey</creatorcontrib><title>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</title><title>Indoor air</title><description>One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria.</description><subject>Aerosols</subject><subject>airborne transmission</subject><subject>Concentration gradient</subject><subject>Confined spaces</subject><subject>Conservation equations</subject><subject>Diffusivity</subject><subject>Dosage</subject><subject>eddy diffusivity</subject><subject>Empirical analysis</subject><subject>gradient transport</subject><subject>Indoor air pollution</subject><subject>Modelling</subject><subject>Original</subject><subject>Pollutants</subject><subject>Pollution dispersion</subject><subject>turbulent transport in rooms</subject><subject>Viruses</subject><subject>Vortices</subject><issn>0905-6947</issn><issn>1600-0668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PwzAMhiMEYmNw4B9U4gKHbvlo2uaCNE18TBpwgXOUNsnI1DYjaYf678nohAQSvliWH7-y_QJwieAUhZiZRkwRZhAdgTFKIYxhmubHYAwZpHHKkmwEzrzfQIgywsgpGJEEU4xJNgarJytVZZp11Hau6CrVtFHrROO31rWR1ZFQznpb-cg03kgVOWtrH3V-P6Kk7CNptA7lzrT9OTjRovLq4pAn4O3-7nXxGK9eHpaL-SouEwxRjElOsyKHEjFWUlpmaUqLXKeaalESomUSepommEilKdNFTpVEMEsLSLBSBZmA20F32xW1kmVY2omKb52pheu5FYb_7jTmna_tjudJEt6RBIHrg4CzH53yLa-NL1VViUbZznNMKcIwZ3SPXv1BN7ZzTTgvUDnOCCSMBupmoMrwLe-U_lkGQb73iAeP-LdHgZ0N7KepVP8_yJfP82HiC5F1kq8</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Venkatram, Akula</creator><creator>Weil, Jeffrey</creator><general>Hindawi Limited</general><general>John Wiley and Sons Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202111</creationdate><title>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</title><author>Venkatram, Akula ; Weil, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-23857b80d199c55c7665b8f6f5fac33fd480df5423def59fb85ed1076b032eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>airborne transmission</topic><topic>Concentration gradient</topic><topic>Confined spaces</topic><topic>Conservation equations</topic><topic>Diffusivity</topic><topic>Dosage</topic><topic>eddy diffusivity</topic><topic>Empirical analysis</topic><topic>gradient transport</topic><topic>Indoor air pollution</topic><topic>Modelling</topic><topic>Original</topic><topic>Pollutants</topic><topic>Pollution dispersion</topic><topic>turbulent transport in rooms</topic><topic>Viruses</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatram, Akula</creatorcontrib><creatorcontrib>Weil, Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Indoor air</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatram, Akula</au><au>Weil, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling turbulent transport of aerosols inside rooms using eddy diffusivity</atitle><jtitle>Indoor air</jtitle><date>2021-11</date><risdate>2021</risdate><volume>31</volume><issue>6</issue><spage>1886</spage><epage>1895</epage><pages>1886-1895</pages><issn>0905-6947</issn><eissn>1600-0668</eissn><abstract>One major approach to modeling dispersion of pollutants inside confined spaces describes the turbulent transport of material as the product of an eddy diffusivity and the local concentration gradient. This paper examines the applicability of this eddy diffusivity/gradient model by (1) describing the conditions under which this approach is an appropriate representation of turbulent transport, and (2) re‐analysis of data provided in studies that have successfully applied gradient transport to describe tracer concentrations. We find that the solutions of the mass conservation equation based on gradient transport provide adequate descriptions of concentration measurements from two studies representative of two types of sources: instantaneous and continuous release of aerosols. We then provide the rationale for the empirical success of the gradient transport model. The solutions of the gradient transport model allow us to examine the relationship between the ventilation rate and the spatial and temporal behavior of the dose of material associated with aerosol releases in a room. We conclude with the associated implications on mitigation of exposure to aerosols such as airborne virus or bacteria.</abstract><cop>Malden</cop><pub>Hindawi Limited</pub><pmid>34252237</pmid><doi>10.1111/ina.12901</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0905-6947 |
ispartof | Indoor air, 2021-11, Vol.31 (6), p.1886-1895 |
issn | 0905-6947 1600-0668 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8446944 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Aerosols airborne transmission Concentration gradient Confined spaces Conservation equations Diffusivity Dosage eddy diffusivity Empirical analysis gradient transport Indoor air pollution Modelling Original Pollutants Pollution dispersion turbulent transport in rooms Viruses Vortices |
title | Modeling turbulent transport of aerosols inside rooms using eddy diffusivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20turbulent%20transport%20of%20aerosols%20inside%20rooms%20using%20eddy%20diffusivity&rft.jtitle=Indoor%20air&rft.au=Venkatram,%20Akula&rft.date=2021-11&rft.volume=31&rft.issue=6&rft.spage=1886&rft.epage=1895&rft.pages=1886-1895&rft.issn=0905-6947&rft.eissn=1600-0668&rft_id=info:doi/10.1111/ina.12901&rft_dat=%3Cproquest_pubme%3E2551208954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582730395&rft_id=info:pmid/34252237&rfr_iscdi=true |