Contrasting recruitment of skin‐associated adipose depots during cold challenge of mouse and human

Key points Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 2022-02, Vol.600 (4), p.847-868
Hauptverfasser: Kasza, Ildiko, Kühn, Jens‐Peter, Völzke, Henry, Hernando, Diego, Xu, Yaohui G., Siebert, John W., Gibson, Angela L. F., Yen, C. ‐L. Eric, Nelson, David W., MacDougald, Ormond A., Richardson, Nicole E., Lamming, Dudley W., Kern, Philip A., Alexander, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 4
container_start_page 847
container_title The Journal of physiology
container_volume 600
creator Kasza, Ildiko
Kühn, Jens‐Peter
Völzke, Henry
Hernando, Diego
Xu, Yaohui G.
Siebert, John W.
Gibson, Angela L. F.
Yen, C. ‐L. Eric
Nelson, David W.
MacDougald, Ormond A.
Richardson, Nicole E.
Lamming, Dudley W.
Kern, Philip A.
Alexander, C. M.
description Key points Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body‐wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue Mammalian skin impacts metabolic efficiency system‐wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin‐associated fat (SAF) body‐wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6‐fold) in women than men, and highly subject‐specific. We used molecular and cellular assays of β‐adrenergic‐induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body‐wide human SAF depot becomes lipolytic, generating heat in response to β‐adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β‐adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin‐associated adipocytes by age, sex and adiposity, for both species. We conclude that the body‐wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue tha
doi_str_mv 10.1113/JP280922
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8443702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501849966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-a76f3c1f8e9ff0bff80f581d5023857a51455d847e74c009739405a02306d5a3</originalsourceid><addsrcrecordid>eNp1kstqHDEQRUWIiSeTQL7ANGSTTdt6tqSNwQx5GUO8mL2Q9ZiR3S2Npe6E2fkT_I35kmiwPcQGb6oWdepSl1sAfELwGCFETs4vsYAS4zdghmgnW84leQtmEGLcEs7QIXhfyjWEiEAp34FDQjimlMsZsIsUx6zLGOKqyc7kKYyDi2OTfFNuQvx7d69LSSbo0dlG27BJxTXWbdJYGjvl3ZpJvW3MWve9iyu32xzSVCkdbbOeBh0_gAOv--I-PvY5WH77ulz8aC9-ff-5OLtoDSWStJp3nhjkhZPewyvvBfRMIMsgJoJxzRBlzArKHacGQsmJpJDpOoWdZZrMwemD7Ga6Gpw1buesV5scBp23Kumgnk9iWKtV-q0EpYRXmTn48iiQ0-3kyqiGUIzrex1ddaQwg0hQKbuuop9foNdpyrG6U7jDgohO1LoXNDmVkp3fH4Og2iWnnpKr6NH_x-_Bp6gqcPwA_Am9274qpJbnl_UHMCH_AGcOorU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628386828</pqid></control><display><type>article</type><title>Contrasting recruitment of skin‐associated adipose depots during cold challenge of mouse and human</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Kasza, Ildiko ; Kühn, Jens‐Peter ; Völzke, Henry ; Hernando, Diego ; Xu, Yaohui G. ; Siebert, John W. ; Gibson, Angela L. F. ; Yen, C. ‐L. Eric ; Nelson, David W. ; MacDougald, Ormond A. ; Richardson, Nicole E. ; Lamming, Dudley W. ; Kern, Philip A. ; Alexander, C. M.</creator><creatorcontrib>Kasza, Ildiko ; Kühn, Jens‐Peter ; Völzke, Henry ; Hernando, Diego ; Xu, Yaohui G. ; Siebert, John W. ; Gibson, Angela L. F. ; Yen, C. ‐L. Eric ; Nelson, David W. ; MacDougald, Ormond A. ; Richardson, Nicole E. ; Lamming, Dudley W. ; Kern, Philip A. ; Alexander, C. M.</creatorcontrib><description>Key points Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body‐wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue Mammalian skin impacts metabolic efficiency system‐wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin‐associated fat (SAF) body‐wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6‐fold) in women than men, and highly subject‐specific. We used molecular and cellular assays of β‐adrenergic‐induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body‐wide human SAF depot becomes lipolytic, generating heat in response to β‐adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β‐adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin‐associated adipocytes by age, sex and adiposity, for both species. We conclude that the body‐wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/JP280922</identifier><identifier>PMID: 33724479</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adipocytes ; Adipose tissue ; Adipose Tissue, Brown - physiology ; Adipose Tissue, White - metabolism ; Animals ; Body fat ; Body temperature ; brown adipose tissue ; dermal white adipose tissue ; dWAT ; Female ; Heat ; Heat loss ; heat production ; Humans ; Lipolysis ; obesity ; scWAT ; Skin ; skin‐associated fat ; Subcutaneous Fat - metabolism ; subcutaneous white adipose tissue ; thermogenesis ; Thermogenesis - physiology ; UCP1 ; β‐adrenergic response</subject><ispartof>The Journal of physiology, 2022-02, Vol.600 (4), p.847-868</ispartof><rights>2021 The Authors. The Journal of Physiology © 2021 The Physiological Society</rights><rights>2021 The Authors. The Journal of Physiology © 2021 The Physiological Society.</rights><rights>Journal compilation © 2022 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-a76f3c1f8e9ff0bff80f581d5023857a51455d847e74c009739405a02306d5a3</citedby><cites>FETCH-LOGICAL-c4393-a76f3c1f8e9ff0bff80f581d5023857a51455d847e74c009739405a02306d5a3</cites><orcidid>0000-0002-0079-4467 ; 0000-0002-7830-8043 ; 0000-0002-2772-3060 ; 0000-0002-4761-7417 ; 0000-0003-3258-930X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443702/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443702/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33724479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasza, Ildiko</creatorcontrib><creatorcontrib>Kühn, Jens‐Peter</creatorcontrib><creatorcontrib>Völzke, Henry</creatorcontrib><creatorcontrib>Hernando, Diego</creatorcontrib><creatorcontrib>Xu, Yaohui G.</creatorcontrib><creatorcontrib>Siebert, John W.</creatorcontrib><creatorcontrib>Gibson, Angela L. F.</creatorcontrib><creatorcontrib>Yen, C. ‐L. Eric</creatorcontrib><creatorcontrib>Nelson, David W.</creatorcontrib><creatorcontrib>MacDougald, Ormond A.</creatorcontrib><creatorcontrib>Richardson, Nicole E.</creatorcontrib><creatorcontrib>Lamming, Dudley W.</creatorcontrib><creatorcontrib>Kern, Philip A.</creatorcontrib><creatorcontrib>Alexander, C. M.</creatorcontrib><title>Contrasting recruitment of skin‐associated adipose depots during cold challenge of mouse and human</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Key points Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body‐wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue Mammalian skin impacts metabolic efficiency system‐wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin‐associated fat (SAF) body‐wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6‐fold) in women than men, and highly subject‐specific. We used molecular and cellular assays of β‐adrenergic‐induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body‐wide human SAF depot becomes lipolytic, generating heat in response to β‐adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β‐adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin‐associated adipocytes by age, sex and adiposity, for both species. We conclude that the body‐wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.</description><subject>Adipocytes</subject><subject>Adipose tissue</subject><subject>Adipose Tissue, Brown - physiology</subject><subject>Adipose Tissue, White - metabolism</subject><subject>Animals</subject><subject>Body fat</subject><subject>Body temperature</subject><subject>brown adipose tissue</subject><subject>dermal white adipose tissue</subject><subject>dWAT</subject><subject>Female</subject><subject>Heat</subject><subject>Heat loss</subject><subject>heat production</subject><subject>Humans</subject><subject>Lipolysis</subject><subject>obesity</subject><subject>scWAT</subject><subject>Skin</subject><subject>skin‐associated fat</subject><subject>Subcutaneous Fat - metabolism</subject><subject>subcutaneous white adipose tissue</subject><subject>thermogenesis</subject><subject>Thermogenesis - physiology</subject><subject>UCP1</subject><subject>β‐adrenergic response</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kstqHDEQRUWIiSeTQL7ANGSTTdt6tqSNwQx5GUO8mL2Q9ZiR3S2Npe6E2fkT_I35kmiwPcQGb6oWdepSl1sAfELwGCFETs4vsYAS4zdghmgnW84leQtmEGLcEs7QIXhfyjWEiEAp34FDQjimlMsZsIsUx6zLGOKqyc7kKYyDi2OTfFNuQvx7d69LSSbo0dlG27BJxTXWbdJYGjvl3ZpJvW3MWve9iyu32xzSVCkdbbOeBh0_gAOv--I-PvY5WH77ulz8aC9-ff-5OLtoDSWStJp3nhjkhZPewyvvBfRMIMsgJoJxzRBlzArKHacGQsmJpJDpOoWdZZrMwemD7Ga6Gpw1buesV5scBp23Kumgnk9iWKtV-q0EpYRXmTn48iiQ0-3kyqiGUIzrex1ddaQwg0hQKbuuop9foNdpyrG6U7jDgohO1LoXNDmVkp3fH4Og2iWnnpKr6NH_x-_Bp6gqcPwA_Am9274qpJbnl_UHMCH_AGcOorU</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Kasza, Ildiko</creator><creator>Kühn, Jens‐Peter</creator><creator>Völzke, Henry</creator><creator>Hernando, Diego</creator><creator>Xu, Yaohui G.</creator><creator>Siebert, John W.</creator><creator>Gibson, Angela L. F.</creator><creator>Yen, C. ‐L. Eric</creator><creator>Nelson, David W.</creator><creator>MacDougald, Ormond A.</creator><creator>Richardson, Nicole E.</creator><creator>Lamming, Dudley W.</creator><creator>Kern, Philip A.</creator><creator>Alexander, C. M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0079-4467</orcidid><orcidid>https://orcid.org/0000-0002-7830-8043</orcidid><orcidid>https://orcid.org/0000-0002-2772-3060</orcidid><orcidid>https://orcid.org/0000-0002-4761-7417</orcidid><orcidid>https://orcid.org/0000-0003-3258-930X</orcidid></search><sort><creationdate>20220201</creationdate><title>Contrasting recruitment of skin‐associated adipose depots during cold challenge of mouse and human</title><author>Kasza, Ildiko ; Kühn, Jens‐Peter ; Völzke, Henry ; Hernando, Diego ; Xu, Yaohui G. ; Siebert, John W. ; Gibson, Angela L. F. ; Yen, C. ‐L. Eric ; Nelson, David W. ; MacDougald, Ormond A. ; Richardson, Nicole E. ; Lamming, Dudley W. ; Kern, Philip A. ; Alexander, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-a76f3c1f8e9ff0bff80f581d5023857a51455d847e74c009739405a02306d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adipocytes</topic><topic>Adipose tissue</topic><topic>Adipose Tissue, Brown - physiology</topic><topic>Adipose Tissue, White - metabolism</topic><topic>Animals</topic><topic>Body fat</topic><topic>Body temperature</topic><topic>brown adipose tissue</topic><topic>dermal white adipose tissue</topic><topic>dWAT</topic><topic>Female</topic><topic>Heat</topic><topic>Heat loss</topic><topic>heat production</topic><topic>Humans</topic><topic>Lipolysis</topic><topic>obesity</topic><topic>scWAT</topic><topic>Skin</topic><topic>skin‐associated fat</topic><topic>Subcutaneous Fat - metabolism</topic><topic>subcutaneous white adipose tissue</topic><topic>thermogenesis</topic><topic>Thermogenesis - physiology</topic><topic>UCP1</topic><topic>β‐adrenergic response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasza, Ildiko</creatorcontrib><creatorcontrib>Kühn, Jens‐Peter</creatorcontrib><creatorcontrib>Völzke, Henry</creatorcontrib><creatorcontrib>Hernando, Diego</creatorcontrib><creatorcontrib>Xu, Yaohui G.</creatorcontrib><creatorcontrib>Siebert, John W.</creatorcontrib><creatorcontrib>Gibson, Angela L. F.</creatorcontrib><creatorcontrib>Yen, C. ‐L. Eric</creatorcontrib><creatorcontrib>Nelson, David W.</creatorcontrib><creatorcontrib>MacDougald, Ormond A.</creatorcontrib><creatorcontrib>Richardson, Nicole E.</creatorcontrib><creatorcontrib>Lamming, Dudley W.</creatorcontrib><creatorcontrib>Kern, Philip A.</creatorcontrib><creatorcontrib>Alexander, C. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasza, Ildiko</au><au>Kühn, Jens‐Peter</au><au>Völzke, Henry</au><au>Hernando, Diego</au><au>Xu, Yaohui G.</au><au>Siebert, John W.</au><au>Gibson, Angela L. F.</au><au>Yen, C. ‐L. Eric</au><au>Nelson, David W.</au><au>MacDougald, Ormond A.</au><au>Richardson, Nicole E.</au><au>Lamming, Dudley W.</au><au>Kern, Philip A.</au><au>Alexander, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting recruitment of skin‐associated adipose depots during cold challenge of mouse and human</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>600</volume><issue>4</issue><spage>847</spage><epage>868</epage><pages>847-868</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Key points Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body‐wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue Mammalian skin impacts metabolic efficiency system‐wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin‐associated fat (SAF) body‐wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6‐fold) in women than men, and highly subject‐specific. We used molecular and cellular assays of β‐adrenergic‐induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body‐wide human SAF depot becomes lipolytic, generating heat in response to β‐adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β‐adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin‐associated adipocytes by age, sex and adiposity, for both species. We conclude that the body‐wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33724479</pmid><doi>10.1113/JP280922</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0079-4467</orcidid><orcidid>https://orcid.org/0000-0002-7830-8043</orcidid><orcidid>https://orcid.org/0000-0002-2772-3060</orcidid><orcidid>https://orcid.org/0000-0002-4761-7417</orcidid><orcidid>https://orcid.org/0000-0003-3258-930X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2022-02, Vol.600 (4), p.847-868
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8443702
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adipocytes
Adipose tissue
Adipose Tissue, Brown - physiology
Adipose Tissue, White - metabolism
Animals
Body fat
Body temperature
brown adipose tissue
dermal white adipose tissue
dWAT
Female
Heat
Heat loss
heat production
Humans
Lipolysis
obesity
scWAT
Skin
skin‐associated fat
Subcutaneous Fat - metabolism
subcutaneous white adipose tissue
thermogenesis
Thermogenesis - physiology
UCP1
β‐adrenergic response
title Contrasting recruitment of skin‐associated adipose depots during cold challenge of mouse and human
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20recruitment%20of%20skin%E2%80%90associated%20adipose%20depots%20during%20cold%20challenge%20of%20mouse%20and%20human&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Kasza,%20Ildiko&rft.date=2022-02-01&rft.volume=600&rft.issue=4&rft.spage=847&rft.epage=868&rft.pages=847-868&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/JP280922&rft_dat=%3Cproquest_pubme%3E2501849966%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628386828&rft_id=info:pmid/33724479&rfr_iscdi=true