Molecular basis for acetyl-CoA production by ATP-citrate lyase
ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2020-01, Vol.27 (1), p.33-41 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | Nature structural & molecular biology |
container_volume | 27 |
creator | Wei, Xuepeng Schultz, Kollin Bazilevsky, Gleb A. Vogt, Austin Marmorstein, Ronen |
description | ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders.
Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA. |
doi_str_mv | 10.1038/s41594-019-0351-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8436250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330332358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotj5-gBsZcOMmmudMsimU4gsUXdR1SNM7dWQ6qcmM0H9vSmt9gK5y4X735Nx7EDqh5IISri6joFILTKjGhEuK8x3Up1JIrLWSu9ta8x46iPGVECZlwfdRj1NVcE5EHw0efA2uq23IJjZWMSt9yKyDdlnjkR9mi-CnnWsr32STZTYcP2FXtcG2kNVLG-EI7ZW2jnC8eQ_R8_XVeHSL7x9v7kbDe-yEVi0uCRO2hHKqdJEXhOTgoNDccQayyNVEO-mUJMTRotSKFaV0lCkHKjEgkudDNFjrLrrJHKYOmmSiNotQzW1YGm8r87PTVC9m5t-NEjxnkiSB841A8G8dxNbMq-igrm0DvouGpXNwzrhUCT37hb76LjRpPZPuRwWlJNf_UlwwIXOlaKLomnLBxxig3FqmxKwyNOsMTcrQrDI0eZo5_b7rduIztASwNRBTq5lB-Pr6b9UPod-lMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342456881</pqid></control><display><type>article</type><title>Molecular basis for acetyl-CoA production by ATP-citrate lyase</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Wei, Xuepeng ; Schultz, Kollin ; Bazilevsky, Gleb A. ; Vogt, Austin ; Marmorstein, Ronen</creator><creatorcontrib>Wei, Xuepeng ; Schultz, Kollin ; Bazilevsky, Gleb A. ; Vogt, Austin ; Marmorstein, Ronen</creatorcontrib><description>ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders.
Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0351-6</identifier><identifier>PMID: 31873304</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/173 ; 631/535/1258/1259 ; Acetyl Coenzyme A - metabolism ; Ashes ; ATP Citrate (pro-S)-Lyase - chemistry ; ATP Citrate (pro-S)-Lyase - metabolism ; ATP Citrate (pro-S)-Lyase - ultrastructure ; ATP citrate lyase ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Biophysics ; Coenzyme A ; Cryoelectron Microscopy ; Domains ; Enzymes ; Homology ; Humans ; Life Sciences ; Ligands ; Medicine ; Membrane Biology ; Metabolic disorders ; Metabolism ; Metabolites ; Models, Molecular ; Molecular biology ; Mutants ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure ; Proteins ; Substrate Specificity ; Substrates</subject><ispartof>Nature structural & molecular biology, 2020-01, Vol.27 (1), p.33-41</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</citedby><cites>FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</cites><orcidid>0000-0002-4456-8349 ; 0000-0002-6514-7076 ; 0000-0003-4373-4752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0351-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0351-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Xuepeng</creatorcontrib><creatorcontrib>Schultz, Kollin</creatorcontrib><creatorcontrib>Bazilevsky, Gleb A.</creatorcontrib><creatorcontrib>Vogt, Austin</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><title>Molecular basis for acetyl-CoA production by ATP-citrate lyase</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders.
Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA.</description><subject>631/45/173</subject><subject>631/535/1258/1259</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Ashes</subject><subject>ATP Citrate (pro-S)-Lyase - chemistry</subject><subject>ATP Citrate (pro-S)-Lyase - metabolism</subject><subject>ATP Citrate (pro-S)-Lyase - ultrastructure</subject><subject>ATP citrate lyase</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Coenzyme A</subject><subject>Cryoelectron Microscopy</subject><subject>Domains</subject><subject>Enzymes</subject><subject>Homology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Medicine</subject><subject>Membrane Biology</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Mutants</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLAzEUhYMotj5-gBsZcOMmmudMsimU4gsUXdR1SNM7dWQ6qcmM0H9vSmt9gK5y4X735Nx7EDqh5IISri6joFILTKjGhEuK8x3Up1JIrLWSu9ta8x46iPGVECZlwfdRj1NVcE5EHw0efA2uq23IJjZWMSt9yKyDdlnjkR9mi-CnnWsr32STZTYcP2FXtcG2kNVLG-EI7ZW2jnC8eQ_R8_XVeHSL7x9v7kbDe-yEVi0uCRO2hHKqdJEXhOTgoNDccQayyNVEO-mUJMTRotSKFaV0lCkHKjEgkudDNFjrLrrJHKYOmmSiNotQzW1YGm8r87PTVC9m5t-NEjxnkiSB841A8G8dxNbMq-igrm0DvouGpXNwzrhUCT37hb76LjRpPZPuRwWlJNf_UlwwIXOlaKLomnLBxxig3FqmxKwyNOsMTcrQrDI0eZo5_b7rduIztASwNRBTq5lB-Pr6b9UPod-lMQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wei, Xuepeng</creator><creator>Schultz, Kollin</creator><creator>Bazilevsky, Gleb A.</creator><creator>Vogt, Austin</creator><creator>Marmorstein, Ronen</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4456-8349</orcidid><orcidid>https://orcid.org/0000-0002-6514-7076</orcidid><orcidid>https://orcid.org/0000-0003-4373-4752</orcidid></search><sort><creationdate>20200101</creationdate><title>Molecular basis for acetyl-CoA production by ATP-citrate lyase</title><author>Wei, Xuepeng ; Schultz, Kollin ; Bazilevsky, Gleb A. ; Vogt, Austin ; Marmorstein, Ronen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45/173</topic><topic>631/535/1258/1259</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Ashes</topic><topic>ATP Citrate (pro-S)-Lyase - chemistry</topic><topic>ATP Citrate (pro-S)-Lyase - metabolism</topic><topic>ATP Citrate (pro-S)-Lyase - ultrastructure</topic><topic>ATP citrate lyase</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Coenzyme A</topic><topic>Cryoelectron Microscopy</topic><topic>Domains</topic><topic>Enzymes</topic><topic>Homology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Medicine</topic><topic>Membrane Biology</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Mutants</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xuepeng</creatorcontrib><creatorcontrib>Schultz, Kollin</creatorcontrib><creatorcontrib>Bazilevsky, Gleb A.</creatorcontrib><creatorcontrib>Vogt, Austin</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xuepeng</au><au>Schultz, Kollin</au><au>Bazilevsky, Gleb A.</au><au>Vogt, Austin</au><au>Marmorstein, Ronen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis for acetyl-CoA production by ATP-citrate lyase</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders.
Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31873304</pmid><doi>10.1038/s41594-019-0351-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4456-8349</orcidid><orcidid>https://orcid.org/0000-0002-6514-7076</orcidid><orcidid>https://orcid.org/0000-0003-4373-4752</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2020-01, Vol.27 (1), p.33-41 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8436250 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 631/45/173 631/535/1258/1259 Acetyl Coenzyme A - metabolism Ashes ATP Citrate (pro-S)-Lyase - chemistry ATP Citrate (pro-S)-Lyase - metabolism ATP Citrate (pro-S)-Lyase - ultrastructure ATP citrate lyase Biochemistry Biological Microscopy Biomedical and Life Sciences Biophysics Coenzyme A Cryoelectron Microscopy Domains Enzymes Homology Humans Life Sciences Ligands Medicine Membrane Biology Metabolic disorders Metabolism Metabolites Models, Molecular Molecular biology Mutants Protein Binding Protein Conformation Protein Multimerization Protein Structure Proteins Substrate Specificity Substrates |
title | Molecular basis for acetyl-CoA production by ATP-citrate lyase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20for%20acetyl-CoA%20production%20by%20ATP-citrate%20lyase&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Wei,%20Xuepeng&rft.date=2020-01-01&rft.volume=27&rft.issue=1&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0351-6&rft_dat=%3Cproquest_pubme%3E2330332358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342456881&rft_id=info:pmid/31873304&rfr_iscdi=true |