Molecular basis for acetyl-CoA production by ATP-citrate lyase

ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2020-01, Vol.27 (1), p.33-41
Hauptverfasser: Wei, Xuepeng, Schultz, Kollin, Bazilevsky, Gleb A., Vogt, Austin, Marmorstein, Ronen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 33
container_title Nature structural & molecular biology
container_volume 27
creator Wei, Xuepeng
Schultz, Kollin
Bazilevsky, Gleb A.
Vogt, Austin
Marmorstein, Ronen
description ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders. Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA.
doi_str_mv 10.1038/s41594-019-0351-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8436250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2330332358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMotj5-gBsZcOMmmudMsimU4gsUXdR1SNM7dWQ6qcmM0H9vSmt9gK5y4X735Nx7EDqh5IISri6joFILTKjGhEuK8x3Up1JIrLWSu9ta8x46iPGVECZlwfdRj1NVcE5EHw0efA2uq23IJjZWMSt9yKyDdlnjkR9mi-CnnWsr32STZTYcP2FXtcG2kNVLG-EI7ZW2jnC8eQ_R8_XVeHSL7x9v7kbDe-yEVi0uCRO2hHKqdJEXhOTgoNDccQayyNVEO-mUJMTRotSKFaV0lCkHKjEgkudDNFjrLrrJHKYOmmSiNotQzW1YGm8r87PTVC9m5t-NEjxnkiSB841A8G8dxNbMq-igrm0DvouGpXNwzrhUCT37hb76LjRpPZPuRwWlJNf_UlwwIXOlaKLomnLBxxig3FqmxKwyNOsMTcrQrDI0eZo5_b7rduIztASwNRBTq5lB-Pr6b9UPod-lMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342456881</pqid></control><display><type>article</type><title>Molecular basis for acetyl-CoA production by ATP-citrate lyase</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Wei, Xuepeng ; Schultz, Kollin ; Bazilevsky, Gleb A. ; Vogt, Austin ; Marmorstein, Ronen</creator><creatorcontrib>Wei, Xuepeng ; Schultz, Kollin ; Bazilevsky, Gleb A. ; Vogt, Austin ; Marmorstein, Ronen</creatorcontrib><description>ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders. Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0351-6</identifier><identifier>PMID: 31873304</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/45/173 ; 631/535/1258/1259 ; Acetyl Coenzyme A - metabolism ; Ashes ; ATP Citrate (pro-S)-Lyase - chemistry ; ATP Citrate (pro-S)-Lyase - metabolism ; ATP Citrate (pro-S)-Lyase - ultrastructure ; ATP citrate lyase ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Biophysics ; Coenzyme A ; Cryoelectron Microscopy ; Domains ; Enzymes ; Homology ; Humans ; Life Sciences ; Ligands ; Medicine ; Membrane Biology ; Metabolic disorders ; Metabolism ; Metabolites ; Models, Molecular ; Molecular biology ; Mutants ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure ; Proteins ; Substrate Specificity ; Substrates</subject><ispartof>Nature structural &amp; molecular biology, 2020-01, Vol.27 (1), p.33-41</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</citedby><cites>FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</cites><orcidid>0000-0002-4456-8349 ; 0000-0002-6514-7076 ; 0000-0003-4373-4752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0351-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0351-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31873304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Xuepeng</creatorcontrib><creatorcontrib>Schultz, Kollin</creatorcontrib><creatorcontrib>Bazilevsky, Gleb A.</creatorcontrib><creatorcontrib>Vogt, Austin</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><title>Molecular basis for acetyl-CoA production by ATP-citrate lyase</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders. Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA.</description><subject>631/45/173</subject><subject>631/535/1258/1259</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Ashes</subject><subject>ATP Citrate (pro-S)-Lyase - chemistry</subject><subject>ATP Citrate (pro-S)-Lyase - metabolism</subject><subject>ATP Citrate (pro-S)-Lyase - ultrastructure</subject><subject>ATP citrate lyase</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Biophysics</subject><subject>Coenzyme A</subject><subject>Cryoelectron Microscopy</subject><subject>Domains</subject><subject>Enzymes</subject><subject>Homology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Medicine</subject><subject>Membrane Biology</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Mutants</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtLAzEUhYMotj5-gBsZcOMmmudMsimU4gsUXdR1SNM7dWQ6qcmM0H9vSmt9gK5y4X735Nx7EDqh5IISri6joFILTKjGhEuK8x3Up1JIrLWSu9ta8x46iPGVECZlwfdRj1NVcE5EHw0efA2uq23IJjZWMSt9yKyDdlnjkR9mi-CnnWsr32STZTYcP2FXtcG2kNVLG-EI7ZW2jnC8eQ_R8_XVeHSL7x9v7kbDe-yEVi0uCRO2hHKqdJEXhOTgoNDccQayyNVEO-mUJMTRotSKFaV0lCkHKjEgkudDNFjrLrrJHKYOmmSiNotQzW1YGm8r87PTVC9m5t-NEjxnkiSB841A8G8dxNbMq-igrm0DvouGpXNwzrhUCT37hb76LjRpPZPuRwWlJNf_UlwwIXOlaKLomnLBxxig3FqmxKwyNOsMTcrQrDI0eZo5_b7rduIztASwNRBTq5lB-Pr6b9UPod-lMQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Wei, Xuepeng</creator><creator>Schultz, Kollin</creator><creator>Bazilevsky, Gleb A.</creator><creator>Vogt, Austin</creator><creator>Marmorstein, Ronen</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4456-8349</orcidid><orcidid>https://orcid.org/0000-0002-6514-7076</orcidid><orcidid>https://orcid.org/0000-0003-4373-4752</orcidid></search><sort><creationdate>20200101</creationdate><title>Molecular basis for acetyl-CoA production by ATP-citrate lyase</title><author>Wei, Xuepeng ; Schultz, Kollin ; Bazilevsky, Gleb A. ; Vogt, Austin ; Marmorstein, Ronen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-f024afefd89767006ece793c32e5768b9c5c8500c17f9827f5c128ce893ce4573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/45/173</topic><topic>631/535/1258/1259</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Ashes</topic><topic>ATP Citrate (pro-S)-Lyase - chemistry</topic><topic>ATP Citrate (pro-S)-Lyase - metabolism</topic><topic>ATP Citrate (pro-S)-Lyase - ultrastructure</topic><topic>ATP citrate lyase</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Biophysics</topic><topic>Coenzyme A</topic><topic>Cryoelectron Microscopy</topic><topic>Domains</topic><topic>Enzymes</topic><topic>Homology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Medicine</topic><topic>Membrane Biology</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Mutants</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xuepeng</creatorcontrib><creatorcontrib>Schultz, Kollin</creatorcontrib><creatorcontrib>Bazilevsky, Gleb A.</creatorcontrib><creatorcontrib>Vogt, Austin</creatorcontrib><creatorcontrib>Marmorstein, Ronen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xuepeng</au><au>Schultz, Kollin</au><au>Bazilevsky, Gleb A.</au><au>Vogt, Austin</au><au>Marmorstein, Ronen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis for acetyl-CoA production by ATP-citrate lyase</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><spage>33</spage><epage>41</epage><pages>33-41</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>ATP-citrate lyase (ACLY) synthesizes cytosolic acetyl coenzyme A (acetyl-CoA), a fundamental cellular building block. Accordingly, aberrant ACLY activity is observed in many diseases. Here we report cryo-EM structures of human ACLY, alone or bound to substrates or products. ACLY forms a homotetramer with a rigid citrate synthase homology (CSH) module, flanked by four flexible acetyl-CoA synthetase homology (ASH) domains; CoA is bound at the CSH–ASH interface in mutually exclusive productive or unproductive conformations. The structure of a catalytic mutant of ACLY in the presence of ATP, citrate and CoA substrates reveals a phospho-citryl-CoA intermediate in the ASH domain. ACLY with acetyl-CoA and oxaloacetate products shows the products bound in the ASH domain, with an additional oxaloacetate in the CSH domain, which could function in ACLY autoinhibition. These structures, which are supported by biochemical and biophysical data, challenge previous proposals of the ACLY catalytic mechanism and suggest additional therapeutic possibilities for ACLY-associated metabolic disorders. Cryo-EM structures of human ATP-citrate lyase alone or bound to substrates or products and supportive biochemical and biophysical data reveal the catalytic mechanism of this enzyme, which is the major source of cytosolic acetyl-CoA.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31873304</pmid><doi>10.1038/s41594-019-0351-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4456-8349</orcidid><orcidid>https://orcid.org/0000-0002-6514-7076</orcidid><orcidid>https://orcid.org/0000-0003-4373-4752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2020-01, Vol.27 (1), p.33-41
issn 1545-9993
1545-9985
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8436250
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 631/45/173
631/535/1258/1259
Acetyl Coenzyme A - metabolism
Ashes
ATP Citrate (pro-S)-Lyase - chemistry
ATP Citrate (pro-S)-Lyase - metabolism
ATP Citrate (pro-S)-Lyase - ultrastructure
ATP citrate lyase
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Biophysics
Coenzyme A
Cryoelectron Microscopy
Domains
Enzymes
Homology
Humans
Life Sciences
Ligands
Medicine
Membrane Biology
Metabolic disorders
Metabolism
Metabolites
Models, Molecular
Molecular biology
Mutants
Protein Binding
Protein Conformation
Protein Multimerization
Protein Structure
Proteins
Substrate Specificity
Substrates
title Molecular basis for acetyl-CoA production by ATP-citrate lyase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20for%20acetyl-CoA%20production%20by%20ATP-citrate%20lyase&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Wei,%20Xuepeng&rft.date=2020-01-01&rft.volume=27&rft.issue=1&rft.spage=33&rft.epage=41&rft.pages=33-41&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0351-6&rft_dat=%3Cproquest_pubme%3E2330332358%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342456881&rft_id=info:pmid/31873304&rfr_iscdi=true