Optical fibers for endoscopic high-power Er:YAG laserosteotomy

Significance: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2021-09, Vol.26 (9), p.095002-095002
Hauptverfasser: Beltrán Bernal, Lina M, Canbaz, Ferda, Darwiche, Salim E, Nuss, Katja M. R, Friederich, Niklaus F, Cattin, Philippe C, Zam, Azhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095002
container_issue 9
container_start_page 095002
container_title Journal of biomedical optics
container_volume 26
creator Beltrán Bernal, Lina M
Canbaz, Ferda
Darwiche, Salim E
Nuss, Katja M. R
Friederich, Niklaus F
Cattin, Philippe C
Zam, Azhar
description Significance: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2  μm is not trivial. Aim: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-μm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. Approach: In our study, various optical fibers with low attenuation (λ  =  2.94  μm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. Results: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82  ±  0.99  mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. Conclusions: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.
doi_str_mv 10.1117/1.JBO.26.9.095002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8435982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572526058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-56c7c3b7564b5bbd36becdc579c3bf22780a67858e8b50380baa726ed4ae20cd3</originalsourceid><addsrcrecordid>eNp1UU1LxDAQDaL4sfoDvBW8eGnNR5OmHgSV9QthL3rwFJJ06ka6TU26yv57IyuKgsxhhpn3HjPzEDokuCCEVCekuLuYFVQUdYFrjjHdQLuEC5xTKslmqrFkORNC7qC9GF8wxlLUYhvtsJKTOsUuOpsNo7O6y1pnIMSs9SGDvvHR-sHZbO6e5_ng3yFk03D6dH6ddTpC8HEEP_rFah9ttbqLcPCVJ-jxavpweZPfz65vL8_vc1uWbMy5sJVlpuKiNNyYhgkDtrG8qlO3pbSSWItKcgnScMwkNlpXVEBTaqDYNmyCzta6w9IsoLHQj0F3aghuocNKee3U70nv5urZvylZMl5LmgSOvwSCf11CHNXCRQtdp3vwy6goryinAnOZoEd_oC9-Gfp0nqJSUIbT78qEImuUTd-IAdrvZQhWn-4oopI7igpVq7U7iVOsOXFw8KP6P-EDqXKPiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862305194</pqid></control><display><type>article</type><title>Optical fibers for endoscopic high-power Er:YAG laserosteotomy</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Beltrán Bernal, Lina M ; Canbaz, Ferda ; Darwiche, Salim E ; Nuss, Katja M. R ; Friederich, Niklaus F ; Cattin, Philippe C ; Zam, Azhar</creator><creatorcontrib>Beltrán Bernal, Lina M ; Canbaz, Ferda ; Darwiche, Salim E ; Nuss, Katja M. R ; Friederich, Niklaus F ; Cattin, Philippe C ; Zam, Azhar</creatorcontrib><description>Significance: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2  μm is not trivial. Aim: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-μm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. Approach: In our study, various optical fibers with low attenuation (λ  =  2.94  μm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. Results: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82  ±  0.99  mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. Conclusions: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.26.9.095002</identifier><identifier>PMID: 34519191</identifier><language>eng</language><publisher>Bellingham: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Ablation ; Attenuation ; Bending ; Carbon dioxide ; Carbon dioxide lasers ; Cutting parameters ; Efficiency ; Endoscopy ; Energy ; Fibers ; Flexibility ; Fluorides ; Germanium ; Germanium oxides ; High power lasers ; Histology ; Image analysis ; Image processing ; Laser ablation ; Lasers ; Maxillofacial surgery ; Microsurgery ; Optical fibers ; Repetition ; Sapphire ; Semiconductor lasers ; Silica ; Structural damage ; Transmission efficiency ; YAG lasers ; Zirconium</subject><ispartof>Journal of biomedical optics, 2021-09, Vol.26 (9), p.095002-095002</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 The Authors 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-56c7c3b7564b5bbd36becdc579c3bf22780a67858e8b50380baa726ed4ae20cd3</citedby><orcidid>0000-0002-0013-1137 ; 0000-0003-4192-7163 ; 0000-0001-5116-4564 ; 0000-0001-7789-5680 ; 0000-0002-9266-7472 ; 0000-0001-8785-2713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862305194/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862305194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,21388,27924,27925,33744,33745,43805,53791,53793,64385,64387,64389,72469,74302</link.rule.ids></links><search><creatorcontrib>Beltrán Bernal, Lina M</creatorcontrib><creatorcontrib>Canbaz, Ferda</creatorcontrib><creatorcontrib>Darwiche, Salim E</creatorcontrib><creatorcontrib>Nuss, Katja M. R</creatorcontrib><creatorcontrib>Friederich, Niklaus F</creatorcontrib><creatorcontrib>Cattin, Philippe C</creatorcontrib><creatorcontrib>Zam, Azhar</creatorcontrib><title>Optical fibers for endoscopic high-power Er:YAG laserosteotomy</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>Significance: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2  μm is not trivial. Aim: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-μm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. Approach: In our study, various optical fibers with low attenuation (λ  =  2.94  μm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. Results: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82  ±  0.99  mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. Conclusions: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.</description><subject>Ablation</subject><subject>Attenuation</subject><subject>Bending</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Cutting parameters</subject><subject>Efficiency</subject><subject>Endoscopy</subject><subject>Energy</subject><subject>Fibers</subject><subject>Flexibility</subject><subject>Fluorides</subject><subject>Germanium</subject><subject>Germanium oxides</subject><subject>High power lasers</subject><subject>Histology</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Laser ablation</subject><subject>Lasers</subject><subject>Maxillofacial surgery</subject><subject>Microsurgery</subject><subject>Optical fibers</subject><subject>Repetition</subject><subject>Sapphire</subject><subject>Semiconductor lasers</subject><subject>Silica</subject><subject>Structural damage</subject><subject>Transmission efficiency</subject><subject>YAG lasers</subject><subject>Zirconium</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UU1LxDAQDaL4sfoDvBW8eGnNR5OmHgSV9QthL3rwFJJ06ka6TU26yv57IyuKgsxhhpn3HjPzEDokuCCEVCekuLuYFVQUdYFrjjHdQLuEC5xTKslmqrFkORNC7qC9GF8wxlLUYhvtsJKTOsUuOpsNo7O6y1pnIMSs9SGDvvHR-sHZbO6e5_ng3yFk03D6dH6ddTpC8HEEP_rFah9ttbqLcPCVJ-jxavpweZPfz65vL8_vc1uWbMy5sJVlpuKiNNyYhgkDtrG8qlO3pbSSWItKcgnScMwkNlpXVEBTaqDYNmyCzta6w9IsoLHQj0F3aghuocNKee3U70nv5urZvylZMl5LmgSOvwSCf11CHNXCRQtdp3vwy6goryinAnOZoEd_oC9-Gfp0nqJSUIbT78qEImuUTd-IAdrvZQhWn-4oopI7igpVq7U7iVOsOXFw8KP6P-EDqXKPiQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Beltrán Bernal, Lina M</creator><creator>Canbaz, Ferda</creator><creator>Darwiche, Salim E</creator><creator>Nuss, Katja M. R</creator><creator>Friederich, Niklaus F</creator><creator>Cattin, Philippe C</creator><creator>Zam, Azhar</creator><general>Society of Photo-Optical Instrumentation Engineers</general><general>S P I E - International Society for</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0013-1137</orcidid><orcidid>https://orcid.org/0000-0003-4192-7163</orcidid><orcidid>https://orcid.org/0000-0001-5116-4564</orcidid><orcidid>https://orcid.org/0000-0001-7789-5680</orcidid><orcidid>https://orcid.org/0000-0002-9266-7472</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid></search><sort><creationdate>20210901</creationdate><title>Optical fibers for endoscopic high-power Er:YAG laserosteotomy</title><author>Beltrán Bernal, Lina M ; Canbaz, Ferda ; Darwiche, Salim E ; Nuss, Katja M. R ; Friederich, Niklaus F ; Cattin, Philippe C ; Zam, Azhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-56c7c3b7564b5bbd36becdc579c3bf22780a67858e8b50380baa726ed4ae20cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Attenuation</topic><topic>Bending</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Cutting parameters</topic><topic>Efficiency</topic><topic>Endoscopy</topic><topic>Energy</topic><topic>Fibers</topic><topic>Flexibility</topic><topic>Fluorides</topic><topic>Germanium</topic><topic>Germanium oxides</topic><topic>High power lasers</topic><topic>Histology</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Laser ablation</topic><topic>Lasers</topic><topic>Maxillofacial surgery</topic><topic>Microsurgery</topic><topic>Optical fibers</topic><topic>Repetition</topic><topic>Sapphire</topic><topic>Semiconductor lasers</topic><topic>Silica</topic><topic>Structural damage</topic><topic>Transmission efficiency</topic><topic>YAG lasers</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán Bernal, Lina M</creatorcontrib><creatorcontrib>Canbaz, Ferda</creatorcontrib><creatorcontrib>Darwiche, Salim E</creatorcontrib><creatorcontrib>Nuss, Katja M. R</creatorcontrib><creatorcontrib>Friederich, Niklaus F</creatorcontrib><creatorcontrib>Cattin, Philippe C</creatorcontrib><creatorcontrib>Zam, Azhar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán Bernal, Lina M</au><au>Canbaz, Ferda</au><au>Darwiche, Salim E</au><au>Nuss, Katja M. R</au><au>Friederich, Niklaus F</au><au>Cattin, Philippe C</au><au>Zam, Azhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical fibers for endoscopic high-power Er:YAG laserosteotomy</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>26</volume><issue>9</issue><spage>095002</spage><epage>095002</epage><pages>095002-095002</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>Significance: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2  μm is not trivial. Aim: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-μm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. Approach: In our study, various optical fibers with low attenuation (λ  =  2.94  μm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. Results: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82  ±  0.99  mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. Conclusions: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.</abstract><cop>Bellingham</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>34519191</pmid><doi>10.1117/1.JBO.26.9.095002</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0013-1137</orcidid><orcidid>https://orcid.org/0000-0003-4192-7163</orcidid><orcidid>https://orcid.org/0000-0001-5116-4564</orcidid><orcidid>https://orcid.org/0000-0001-7789-5680</orcidid><orcidid>https://orcid.org/0000-0002-9266-7472</orcidid><orcidid>https://orcid.org/0000-0001-8785-2713</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2021-09, Vol.26 (9), p.095002-095002
issn 1083-3668
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8435982
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central
subjects Ablation
Attenuation
Bending
Carbon dioxide
Carbon dioxide lasers
Cutting parameters
Efficiency
Endoscopy
Energy
Fibers
Flexibility
Fluorides
Germanium
Germanium oxides
High power lasers
Histology
Image analysis
Image processing
Laser ablation
Lasers
Maxillofacial surgery
Microsurgery
Optical fibers
Repetition
Sapphire
Semiconductor lasers
Silica
Structural damage
Transmission efficiency
YAG lasers
Zirconium
title Optical fibers for endoscopic high-power Er:YAG laserosteotomy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20fibers%20for%20endoscopic%20high-power%20Er:YAG%20laserosteotomy&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Beltr%C3%A1n%20Bernal,%20Lina%20M&rft.date=2021-09-01&rft.volume=26&rft.issue=9&rft.spage=095002&rft.epage=095002&rft.pages=095002-095002&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.26.9.095002&rft_dat=%3Cproquest_pubme%3E2572526058%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862305194&rft_id=info:pmid/34519191&rfr_iscdi=true