Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization
The rapid development of display technologies has raised interest in arrays of self-emitting, individually controlled light sources atthe microscale. Gallium nitride (GaN) micro-light-emitting diode (LED) technology meets this demand. However, the current technology is not suitable for the fabricati...
Gespeichert in:
Veröffentlicht in: | Microsystems & nanoengineering 2020-10, Vol.6 (1), p.88-88, Article 88 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | Microsystems & nanoengineering |
container_volume | 6 |
creator | Bezshlyakh, Daria D. Spende, Hendrik Weimann, Thomas Hinze, Peter Bornemann, Steffen Gülink, Jan Canals, Joan Prades, Joan Daniel Dieguez, Angel Waag, Andreas |
description | The rapid development of display technologies has raised interest in arrays of self-emitting, individually controlled light sources atthe microscale. Gallium nitride (GaN) micro-light-emitting diode (LED) technology meets this demand. However, the current technology is not suitable for the fabrication of arrays of submicron light sources that can be controlled individually. Our approach is based on nanoLED arrays that can directly address each array element and a self-pitch with dimensions below the wavelength of light. The design and fabrication processes are explained in detail and possess two geometries: a 6 × 6 array with 400 nm LEDs and a 2 × 32 line array with 200 nm LEDs. These nanoLEDs are developed as core elements of a novel on-chip super-resolution microscope. GaN technology, based on its physical properties, is an ideal platform for such nanoLEDs.
Tiny lights enable molecular-scale imaging
Arrays of nanoscale light-emitting diodes (LEDs) offer an energy-efficient means for achieving microscopic imaging with resolution below the diffraction limit. Microscale LEDs are already poised to have a transformative impact on display technology, but it remains challenging to construct arrays of individually controllable LEDs at the nanometer scale. Daria Bezshlyakh of the Technische Universität Braunschweig in Germany and colleagues have developed a fabrication approach that enabled them to manufacture a compact super-resolution imaging system based on such arrays. Their device employs gallium nitride nano-LEDs that generate precisely structured patterns of illumination, which make it possible to image specimens at spatial resolutions smaller than the wavelength of light. Based on the performance and stability of this initial prototype, the authors conclude that similar devices could offer a promising platform for future molecular imaging applications. |
doi_str_mv | 10.1038/s41378-020-00198-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576906832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-7a48f876084e6b81bc7010b567de9e7d27826b3cfc82f0822e99df13a2d722d13</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhS3UChDwAqyy7MbFf4kdFpWqGaCVRrApa3Nj38wEZeypnUFKnx6XQVW76cqW_Z1zr84h5JKzz5xJc5UVl9pQJhhljLeGzkfkVLC6plpJ9eGv-wm5yPmZFUpL3bL6mJxIVTe6ac0peVoOCd00zhV4nzBn6Eas7uCedpDRVwFCpKubZQUpwZyvqx66NDiYhhgqCL7CschTpHE3leexchtI4CZMw6836Jx87GHMePF-npHH25sfi2909XD3ffF1RZ0ScqIalOmNbphR2HSGd04zzrqypscWtRfaiKaTrndG9MwIgW3rey5BeC2E5_KMfDn47vbdFr3DMCUY7S4NW0izjTDYf3_CsLHr-GKNklIxWQw-vRuk-HOPebLbITscRwgY99mKuiTGGiNFQcUBdSnmnLD_M4Yz-7sde2jHlnbsWzt2LiJ5EOUChzUm-xz3KZRM_qd6Bb6wkwE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576906832</pqid></control><display><type>article</type><title>Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Bezshlyakh, Daria D. ; Spende, Hendrik ; Weimann, Thomas ; Hinze, Peter ; Bornemann, Steffen ; Gülink, Jan ; Canals, Joan ; Prades, Joan Daniel ; Dieguez, Angel ; Waag, Andreas</creator><creatorcontrib>Bezshlyakh, Daria D. ; Spende, Hendrik ; Weimann, Thomas ; Hinze, Peter ; Bornemann, Steffen ; Gülink, Jan ; Canals, Joan ; Prades, Joan Daniel ; Dieguez, Angel ; Waag, Andreas</creatorcontrib><description>The rapid development of display technologies has raised interest in arrays of self-emitting, individually controlled light sources atthe microscale. Gallium nitride (GaN) micro-light-emitting diode (LED) technology meets this demand. However, the current technology is not suitable for the fabrication of arrays of submicron light sources that can be controlled individually. Our approach is based on nanoLED arrays that can directly address each array element and a self-pitch with dimensions below the wavelength of light. The design and fabrication processes are explained in detail and possess two geometries: a 6 × 6 array with 400 nm LEDs and a 2 × 32 line array with 200 nm LEDs. These nanoLEDs are developed as core elements of a novel on-chip super-resolution microscope. GaN technology, based on its physical properties, is an ideal platform for such nanoLEDs.
Tiny lights enable molecular-scale imaging
Arrays of nanoscale light-emitting diodes (LEDs) offer an energy-efficient means for achieving microscopic imaging with resolution below the diffraction limit. Microscale LEDs are already poised to have a transformative impact on display technology, but it remains challenging to construct arrays of individually controllable LEDs at the nanometer scale. Daria Bezshlyakh of the Technische Universität Braunschweig in Germany and colleagues have developed a fabrication approach that enabled them to manufacture a compact super-resolution imaging system based on such arrays. Their device employs gallium nitride nano-LEDs that generate precisely structured patterns of illumination, which make it possible to image specimens at spatial resolutions smaller than the wavelength of light. Based on the performance and stability of this initial prototype, the authors conclude that similar devices could offer a promising platform for future molecular imaging applications.</description><identifier>ISSN: 2055-7434</identifier><identifier>ISSN: 2096-1030</identifier><identifier>EISSN: 2055-7434</identifier><identifier>DOI: 10.1038/s41378-020-00198-y</identifier><identifier>PMID: 34567698</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1111/1113 ; 639/925/927/1021 ; Engineering</subject><ispartof>Microsystems & nanoengineering, 2020-10, Vol.6 (1), p.88-88, Article 88</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-7a48f876084e6b81bc7010b567de9e7d27826b3cfc82f0822e99df13a2d722d13</citedby><cites>FETCH-LOGICAL-c423t-7a48f876084e6b81bc7010b567de9e7d27826b3cfc82f0822e99df13a2d722d13</cites><orcidid>0000-0003-2867-3197 ; 0000-0003-2543-7682 ; 0000-0002-9205-342X ; 0000-0001-6721-7245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433403/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433403/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Bezshlyakh, Daria D.</creatorcontrib><creatorcontrib>Spende, Hendrik</creatorcontrib><creatorcontrib>Weimann, Thomas</creatorcontrib><creatorcontrib>Hinze, Peter</creatorcontrib><creatorcontrib>Bornemann, Steffen</creatorcontrib><creatorcontrib>Gülink, Jan</creatorcontrib><creatorcontrib>Canals, Joan</creatorcontrib><creatorcontrib>Prades, Joan Daniel</creatorcontrib><creatorcontrib>Dieguez, Angel</creatorcontrib><creatorcontrib>Waag, Andreas</creatorcontrib><title>Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization</title><title>Microsystems & nanoengineering</title><addtitle>Microsyst Nanoeng</addtitle><description>The rapid development of display technologies has raised interest in arrays of self-emitting, individually controlled light sources atthe microscale. Gallium nitride (GaN) micro-light-emitting diode (LED) technology meets this demand. However, the current technology is not suitable for the fabrication of arrays of submicron light sources that can be controlled individually. Our approach is based on nanoLED arrays that can directly address each array element and a self-pitch with dimensions below the wavelength of light. The design and fabrication processes are explained in detail and possess two geometries: a 6 × 6 array with 400 nm LEDs and a 2 × 32 line array with 200 nm LEDs. These nanoLEDs are developed as core elements of a novel on-chip super-resolution microscope. GaN technology, based on its physical properties, is an ideal platform for such nanoLEDs.
Tiny lights enable molecular-scale imaging
Arrays of nanoscale light-emitting diodes (LEDs) offer an energy-efficient means for achieving microscopic imaging with resolution below the diffraction limit. Microscale LEDs are already poised to have a transformative impact on display technology, but it remains challenging to construct arrays of individually controllable LEDs at the nanometer scale. Daria Bezshlyakh of the Technische Universität Braunschweig in Germany and colleagues have developed a fabrication approach that enabled them to manufacture a compact super-resolution imaging system based on such arrays. Their device employs gallium nitride nano-LEDs that generate precisely structured patterns of illumination, which make it possible to image specimens at spatial resolutions smaller than the wavelength of light. Based on the performance and stability of this initial prototype, the authors conclude that similar devices could offer a promising platform for future molecular imaging applications.</description><subject>639/624/1111/1113</subject><subject>639/925/927/1021</subject><subject>Engineering</subject><issn>2055-7434</issn><issn>2096-1030</issn><issn>2055-7434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kc1O3DAUhS3UChDwAqyy7MbFf4kdFpWqGaCVRrApa3Nj38wEZeypnUFKnx6XQVW76cqW_Z1zr84h5JKzz5xJc5UVl9pQJhhljLeGzkfkVLC6plpJ9eGv-wm5yPmZFUpL3bL6mJxIVTe6ac0peVoOCd00zhV4nzBn6Eas7uCedpDRVwFCpKubZQUpwZyvqx66NDiYhhgqCL7CschTpHE3leexchtI4CZMw6836Jx87GHMePF-npHH25sfi2909XD3ffF1RZ0ScqIalOmNbphR2HSGd04zzrqypscWtRfaiKaTrndG9MwIgW3rey5BeC2E5_KMfDn47vbdFr3DMCUY7S4NW0izjTDYf3_CsLHr-GKNklIxWQw-vRuk-HOPebLbITscRwgY99mKuiTGGiNFQcUBdSnmnLD_M4Yz-7sde2jHlnbsWzt2LiJ5EOUChzUm-xz3KZRM_qd6Bb6wkwE</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Bezshlyakh, Daria D.</creator><creator>Spende, Hendrik</creator><creator>Weimann, Thomas</creator><creator>Hinze, Peter</creator><creator>Bornemann, Steffen</creator><creator>Gülink, Jan</creator><creator>Canals, Joan</creator><creator>Prades, Joan Daniel</creator><creator>Dieguez, Angel</creator><creator>Waag, Andreas</creator><general>Nature Publishing Group UK</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2867-3197</orcidid><orcidid>https://orcid.org/0000-0003-2543-7682</orcidid><orcidid>https://orcid.org/0000-0002-9205-342X</orcidid><orcidid>https://orcid.org/0000-0001-6721-7245</orcidid></search><sort><creationdate>20201019</creationdate><title>Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization</title><author>Bezshlyakh, Daria D. ; Spende, Hendrik ; Weimann, Thomas ; Hinze, Peter ; Bornemann, Steffen ; Gülink, Jan ; Canals, Joan ; Prades, Joan Daniel ; Dieguez, Angel ; Waag, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-7a48f876084e6b81bc7010b567de9e7d27826b3cfc82f0822e99df13a2d722d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/1111/1113</topic><topic>639/925/927/1021</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezshlyakh, Daria D.</creatorcontrib><creatorcontrib>Spende, Hendrik</creatorcontrib><creatorcontrib>Weimann, Thomas</creatorcontrib><creatorcontrib>Hinze, Peter</creatorcontrib><creatorcontrib>Bornemann, Steffen</creatorcontrib><creatorcontrib>Gülink, Jan</creatorcontrib><creatorcontrib>Canals, Joan</creatorcontrib><creatorcontrib>Prades, Joan Daniel</creatorcontrib><creatorcontrib>Dieguez, Angel</creatorcontrib><creatorcontrib>Waag, Andreas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microsystems & nanoengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezshlyakh, Daria D.</au><au>Spende, Hendrik</au><au>Weimann, Thomas</au><au>Hinze, Peter</au><au>Bornemann, Steffen</au><au>Gülink, Jan</au><au>Canals, Joan</au><au>Prades, Joan Daniel</au><au>Dieguez, Angel</au><au>Waag, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization</atitle><jtitle>Microsystems & nanoengineering</jtitle><stitle>Microsyst Nanoeng</stitle><date>2020-10-19</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>88</spage><epage>88</epage><pages>88-88</pages><artnum>88</artnum><issn>2055-7434</issn><issn>2096-1030</issn><eissn>2055-7434</eissn><abstract>The rapid development of display technologies has raised interest in arrays of self-emitting, individually controlled light sources atthe microscale. Gallium nitride (GaN) micro-light-emitting diode (LED) technology meets this demand. However, the current technology is not suitable for the fabrication of arrays of submicron light sources that can be controlled individually. Our approach is based on nanoLED arrays that can directly address each array element and a self-pitch with dimensions below the wavelength of light. The design and fabrication processes are explained in detail and possess two geometries: a 6 × 6 array with 400 nm LEDs and a 2 × 32 line array with 200 nm LEDs. These nanoLEDs are developed as core elements of a novel on-chip super-resolution microscope. GaN technology, based on its physical properties, is an ideal platform for such nanoLEDs.
Tiny lights enable molecular-scale imaging
Arrays of nanoscale light-emitting diodes (LEDs) offer an energy-efficient means for achieving microscopic imaging with resolution below the diffraction limit. Microscale LEDs are already poised to have a transformative impact on display technology, but it remains challenging to construct arrays of individually controllable LEDs at the nanometer scale. Daria Bezshlyakh of the Technische Universität Braunschweig in Germany and colleagues have developed a fabrication approach that enabled them to manufacture a compact super-resolution imaging system based on such arrays. Their device employs gallium nitride nano-LEDs that generate precisely structured patterns of illumination, which make it possible to image specimens at spatial resolutions smaller than the wavelength of light. Based on the performance and stability of this initial prototype, the authors conclude that similar devices could offer a promising platform for future molecular imaging applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34567698</pmid><doi>10.1038/s41378-020-00198-y</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2867-3197</orcidid><orcidid>https://orcid.org/0000-0003-2543-7682</orcidid><orcidid>https://orcid.org/0000-0002-9205-342X</orcidid><orcidid>https://orcid.org/0000-0001-6721-7245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-7434 |
ispartof | Microsystems & nanoengineering, 2020-10, Vol.6 (1), p.88-88, Article 88 |
issn | 2055-7434 2096-1030 2055-7434 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433403 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA Free Journals |
subjects | 639/624/1111/1113 639/925/927/1021 Engineering |
title | Directly addressable GaN-based nano-LED arrays: fabrication and electro-optical characterization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A21%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directly%20addressable%20GaN-based%20nano-LED%20arrays:%20fabrication%20and%20electro-optical%20characterization&rft.jtitle=Microsystems%20&%20nanoengineering&rft.au=Bezshlyakh,%20Daria%20D.&rft.date=2020-10-19&rft.volume=6&rft.issue=1&rft.spage=88&rft.epage=88&rft.pages=88-88&rft.artnum=88&rft.issn=2055-7434&rft.eissn=2055-7434&rft_id=info:doi/10.1038/s41378-020-00198-y&rft_dat=%3Cproquest_pubme%3E2576906832%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576906832&rft_id=info:pmid/34567698&rfr_iscdi=true |