Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction

Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2020-06, Vol.34 (6), p.8139-8154
Hauptverfasser: Ghosh, Rhia, Wood‐Kaczmar, Alison, Dobson, Lucianne, Smith, Edward J., Sirinathsinghji, Eva C., Kriston‐Vizi, Janos, Hargreaves, Iain P., Heaton, Robert, Herrmann, Frank, Abramov, Andrey Y., Lam, Amanda J., Heales, Simon J., Ketteler, Robin, Bates, Gillian P., Andre, Ralph, Tabrizi, Sarah J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8154
container_issue 6
container_start_page 8139
container_title The FASEB journal
container_volume 34
creator Ghosh, Rhia
Wood‐Kaczmar, Alison
Dobson, Lucianne
Smith, Edward J.
Sirinathsinghji, Eva C.
Kriston‐Vizi, Janos
Hargreaves, Iain P.
Heaton, Robert
Herrmann, Frank
Abramov, Andrey Y.
Lam, Amanda J.
Heales, Simon J.
Ketteler, Robin
Bates, Gillian P.
Andre, Ralph
Tabrizi, Sarah J.
description Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.
doi_str_mv 10.1096/fj.201902277RR
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8432155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FSB220542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</originalsourceid><addsrcrecordid>eNqFkctOAyEUhonRaK1uXRpeYCqXGQobE23qJTEx8bImDAPtNDPQwIzat_CRZawaXbkgcDj_-cjPD8AJRhOMBDuzqwlBWCBCptOHhx0wwgVFGeMM7YIR4oJkjFF-AA5jXCGEMMJsHxxQQonAlI7A-_xtHUyMtXfQW9j2nXIdNG-pxHDZu652i7SgDWrRGtdFmIpl3yoHnemDamDsTAu1aZoIlas-b72LUKs-mkGtm_6Tbn1oVTecBllbd14vvatCnRjVJtre6aF7BPasaqI5_trH4Plq_jS7ye7ur29nF3eZzikjGZlqVBqlFSqY4Mm_yBlRmnJucVnaQmiWvoVYbridClxyYhTWpBImDRUVpmNwvuWu-7I1lU7ekhu5DnWrwkZ6Vcu_HVcv5cK_SJ5TgosiASZbgA4-xmDszyxGcshG2pX8lU0aOP394o_8O4wkKLaC17oxm39w8urxkhBU5IR-ABAvoFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Ghosh, Rhia ; Wood‐Kaczmar, Alison ; Dobson, Lucianne ; Smith, Edward J. ; Sirinathsinghji, Eva C. ; Kriston‐Vizi, Janos ; Hargreaves, Iain P. ; Heaton, Robert ; Herrmann, Frank ; Abramov, Andrey Y. ; Lam, Amanda J. ; Heales, Simon J. ; Ketteler, Robin ; Bates, Gillian P. ; Andre, Ralph ; Tabrizi, Sarah J.</creator><creatorcontrib>Ghosh, Rhia ; Wood‐Kaczmar, Alison ; Dobson, Lucianne ; Smith, Edward J. ; Sirinathsinghji, Eva C. ; Kriston‐Vizi, Janos ; Hargreaves, Iain P. ; Heaton, Robert ; Herrmann, Frank ; Abramov, Andrey Y. ; Lam, Amanda J. ; Heales, Simon J. ; Ketteler, Robin ; Bates, Gillian P. ; Andre, Ralph ; Tabrizi, Sarah J.</creatorcontrib><description>Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201902277RR</identifier><identifier>PMID: 32329133</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>aggregation ; Cells, Cultured ; Humans ; Huntingtin Protein - metabolism ; Huntington Disease - metabolism ; Huntington's ; Inclusion Bodies - metabolism ; mitochondria ; Mitochondria - metabolism ; Nerve Tissue Proteins - metabolism ; Neural Stem Cells - metabolism ; Neurons - metabolism ; Nuclear Proteins - metabolism ; Peptides - metabolism ; respiration</subject><ispartof>The FASEB journal, 2020-06, Vol.34 (6), p.8139-8154</ispartof><rights>2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology</rights><rights>2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</citedby><cites>FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.201902277RR$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.201902277RR$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32329133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Rhia</creatorcontrib><creatorcontrib>Wood‐Kaczmar, Alison</creatorcontrib><creatorcontrib>Dobson, Lucianne</creatorcontrib><creatorcontrib>Smith, Edward J.</creatorcontrib><creatorcontrib>Sirinathsinghji, Eva C.</creatorcontrib><creatorcontrib>Kriston‐Vizi, Janos</creatorcontrib><creatorcontrib>Hargreaves, Iain P.</creatorcontrib><creatorcontrib>Heaton, Robert</creatorcontrib><creatorcontrib>Herrmann, Frank</creatorcontrib><creatorcontrib>Abramov, Andrey Y.</creatorcontrib><creatorcontrib>Lam, Amanda J.</creatorcontrib><creatorcontrib>Heales, Simon J.</creatorcontrib><creatorcontrib>Ketteler, Robin</creatorcontrib><creatorcontrib>Bates, Gillian P.</creatorcontrib><creatorcontrib>Andre, Ralph</creatorcontrib><creatorcontrib>Tabrizi, Sarah J.</creatorcontrib><title>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.</description><subject>aggregation</subject><subject>Cells, Cultured</subject><subject>Humans</subject><subject>Huntingtin Protein - metabolism</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington's</subject><subject>Inclusion Bodies - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurons - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>Peptides - metabolism</subject><subject>respiration</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctOAyEUhonRaK1uXRpeYCqXGQobE23qJTEx8bImDAPtNDPQwIzat_CRZawaXbkgcDj_-cjPD8AJRhOMBDuzqwlBWCBCptOHhx0wwgVFGeMM7YIR4oJkjFF-AA5jXCGEMMJsHxxQQonAlI7A-_xtHUyMtXfQW9j2nXIdNG-pxHDZu652i7SgDWrRGtdFmIpl3yoHnemDamDsTAu1aZoIlas-b72LUKs-mkGtm_6Tbn1oVTecBllbd14vvatCnRjVJtre6aF7BPasaqI5_trH4Plq_jS7ye7ur29nF3eZzikjGZlqVBqlFSqY4Mm_yBlRmnJucVnaQmiWvoVYbridClxyYhTWpBImDRUVpmNwvuWu-7I1lU7ekhu5DnWrwkZ6Vcu_HVcv5cK_SJ5TgosiASZbgA4-xmDszyxGcshG2pX8lU0aOP394o_8O4wkKLaC17oxm39w8urxkhBU5IR-ABAvoFs</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Ghosh, Rhia</creator><creator>Wood‐Kaczmar, Alison</creator><creator>Dobson, Lucianne</creator><creator>Smith, Edward J.</creator><creator>Sirinathsinghji, Eva C.</creator><creator>Kriston‐Vizi, Janos</creator><creator>Hargreaves, Iain P.</creator><creator>Heaton, Robert</creator><creator>Herrmann, Frank</creator><creator>Abramov, Andrey Y.</creator><creator>Lam, Amanda J.</creator><creator>Heales, Simon J.</creator><creator>Ketteler, Robin</creator><creator>Bates, Gillian P.</creator><creator>Andre, Ralph</creator><creator>Tabrizi, Sarah J.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>202006</creationdate><title>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</title><author>Ghosh, Rhia ; Wood‐Kaczmar, Alison ; Dobson, Lucianne ; Smith, Edward J. ; Sirinathsinghji, Eva C. ; Kriston‐Vizi, Janos ; Hargreaves, Iain P. ; Heaton, Robert ; Herrmann, Frank ; Abramov, Andrey Y. ; Lam, Amanda J. ; Heales, Simon J. ; Ketteler, Robin ; Bates, Gillian P. ; Andre, Ralph ; Tabrizi, Sarah J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aggregation</topic><topic>Cells, Cultured</topic><topic>Humans</topic><topic>Huntingtin Protein - metabolism</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington's</topic><topic>Inclusion Bodies - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurons - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>Peptides - metabolism</topic><topic>respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Rhia</creatorcontrib><creatorcontrib>Wood‐Kaczmar, Alison</creatorcontrib><creatorcontrib>Dobson, Lucianne</creatorcontrib><creatorcontrib>Smith, Edward J.</creatorcontrib><creatorcontrib>Sirinathsinghji, Eva C.</creatorcontrib><creatorcontrib>Kriston‐Vizi, Janos</creatorcontrib><creatorcontrib>Hargreaves, Iain P.</creatorcontrib><creatorcontrib>Heaton, Robert</creatorcontrib><creatorcontrib>Herrmann, Frank</creatorcontrib><creatorcontrib>Abramov, Andrey Y.</creatorcontrib><creatorcontrib>Lam, Amanda J.</creatorcontrib><creatorcontrib>Heales, Simon J.</creatorcontrib><creatorcontrib>Ketteler, Robin</creatorcontrib><creatorcontrib>Bates, Gillian P.</creatorcontrib><creatorcontrib>Andre, Ralph</creatorcontrib><creatorcontrib>Tabrizi, Sarah J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Rhia</au><au>Wood‐Kaczmar, Alison</au><au>Dobson, Lucianne</au><au>Smith, Edward J.</au><au>Sirinathsinghji, Eva C.</au><au>Kriston‐Vizi, Janos</au><au>Hargreaves, Iain P.</au><au>Heaton, Robert</au><au>Herrmann, Frank</au><au>Abramov, Andrey Y.</au><au>Lam, Amanda J.</au><au>Heales, Simon J.</au><au>Ketteler, Robin</au><au>Bates, Gillian P.</au><au>Andre, Ralph</au><au>Tabrizi, Sarah J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2020-06</date><risdate>2020</risdate><volume>34</volume><issue>6</issue><spage>8139</spage><epage>8154</epage><pages>8139-8154</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>32329133</pmid><doi>10.1096/fj.201902277RR</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0892-6638
ispartof The FASEB journal, 2020-06, Vol.34 (6), p.8139-8154
issn 0892-6638
1530-6860
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8432155
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects aggregation
Cells, Cultured
Humans
Huntingtin Protein - metabolism
Huntington Disease - metabolism
Huntington's
Inclusion Bodies - metabolism
mitochondria
Mitochondria - metabolism
Nerve Tissue Proteins - metabolism
Neural Stem Cells - metabolism
Neurons - metabolism
Nuclear Proteins - metabolism
Peptides - metabolism
respiration
title Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20mutant%20exon%201%20huntingtin%20fragments%20in%20human%20neural%20stem%20cells%20and%20neurons%20causes%20inclusion%20formation%20and%20mitochondrial%20dysfunction&rft.jtitle=The%20FASEB%20journal&rft.au=Ghosh,%20Rhia&rft.date=2020-06&rft.volume=34&rft.issue=6&rft.spage=8139&rft.epage=8154&rft.pages=8139-8154&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201902277RR&rft_dat=%3Cwiley_pubme%3EFSB220542%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32329133&rfr_iscdi=true