Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction
Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not rec...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 2020-06, Vol.34 (6), p.8139-8154 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8154 |
---|---|
container_issue | 6 |
container_start_page | 8139 |
container_title | The FASEB journal |
container_volume | 34 |
creator | Ghosh, Rhia Wood‐Kaczmar, Alison Dobson, Lucianne Smith, Edward J. Sirinathsinghji, Eva C. Kriston‐Vizi, Janos Hargreaves, Iain P. Heaton, Robert Herrmann, Frank Abramov, Andrey Y. Lam, Amanda J. Heales, Simon J. Ketteler, Robin Bates, Gillian P. Andre, Ralph Tabrizi, Sarah J. |
description | Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction. |
doi_str_mv | 10.1096/fj.201902277RR |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8432155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FSB220542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</originalsourceid><addsrcrecordid>eNqFkctOAyEUhonRaK1uXRpeYCqXGQobE23qJTEx8bImDAPtNDPQwIzat_CRZawaXbkgcDj_-cjPD8AJRhOMBDuzqwlBWCBCptOHhx0wwgVFGeMM7YIR4oJkjFF-AA5jXCGEMMJsHxxQQonAlI7A-_xtHUyMtXfQW9j2nXIdNG-pxHDZu652i7SgDWrRGtdFmIpl3yoHnemDamDsTAu1aZoIlas-b72LUKs-mkGtm_6Tbn1oVTecBllbd14vvatCnRjVJtre6aF7BPasaqI5_trH4Plq_jS7ye7ur29nF3eZzikjGZlqVBqlFSqY4Mm_yBlRmnJucVnaQmiWvoVYbridClxyYhTWpBImDRUVpmNwvuWu-7I1lU7ekhu5DnWrwkZ6Vcu_HVcv5cK_SJ5TgosiASZbgA4-xmDszyxGcshG2pX8lU0aOP394o_8O4wkKLaC17oxm39w8urxkhBU5IR-ABAvoFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Ghosh, Rhia ; Wood‐Kaczmar, Alison ; Dobson, Lucianne ; Smith, Edward J. ; Sirinathsinghji, Eva C. ; Kriston‐Vizi, Janos ; Hargreaves, Iain P. ; Heaton, Robert ; Herrmann, Frank ; Abramov, Andrey Y. ; Lam, Amanda J. ; Heales, Simon J. ; Ketteler, Robin ; Bates, Gillian P. ; Andre, Ralph ; Tabrizi, Sarah J.</creator><creatorcontrib>Ghosh, Rhia ; Wood‐Kaczmar, Alison ; Dobson, Lucianne ; Smith, Edward J. ; Sirinathsinghji, Eva C. ; Kriston‐Vizi, Janos ; Hargreaves, Iain P. ; Heaton, Robert ; Herrmann, Frank ; Abramov, Andrey Y. ; Lam, Amanda J. ; Heales, Simon J. ; Ketteler, Robin ; Bates, Gillian P. ; Andre, Ralph ; Tabrizi, Sarah J.</creatorcontrib><description>Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201902277RR</identifier><identifier>PMID: 32329133</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>aggregation ; Cells, Cultured ; Humans ; Huntingtin Protein - metabolism ; Huntington Disease - metabolism ; Huntington's ; Inclusion Bodies - metabolism ; mitochondria ; Mitochondria - metabolism ; Nerve Tissue Proteins - metabolism ; Neural Stem Cells - metabolism ; Neurons - metabolism ; Nuclear Proteins - metabolism ; Peptides - metabolism ; respiration</subject><ispartof>The FASEB journal, 2020-06, Vol.34 (6), p.8139-8154</ispartof><rights>2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology</rights><rights>2020 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</citedby><cites>FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.201902277RR$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.201902277RR$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32329133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghosh, Rhia</creatorcontrib><creatorcontrib>Wood‐Kaczmar, Alison</creatorcontrib><creatorcontrib>Dobson, Lucianne</creatorcontrib><creatorcontrib>Smith, Edward J.</creatorcontrib><creatorcontrib>Sirinathsinghji, Eva C.</creatorcontrib><creatorcontrib>Kriston‐Vizi, Janos</creatorcontrib><creatorcontrib>Hargreaves, Iain P.</creatorcontrib><creatorcontrib>Heaton, Robert</creatorcontrib><creatorcontrib>Herrmann, Frank</creatorcontrib><creatorcontrib>Abramov, Andrey Y.</creatorcontrib><creatorcontrib>Lam, Amanda J.</creatorcontrib><creatorcontrib>Heales, Simon J.</creatorcontrib><creatorcontrib>Ketteler, Robin</creatorcontrib><creatorcontrib>Bates, Gillian P.</creatorcontrib><creatorcontrib>Andre, Ralph</creatorcontrib><creatorcontrib>Tabrizi, Sarah J.</creatorcontrib><title>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.</description><subject>aggregation</subject><subject>Cells, Cultured</subject><subject>Humans</subject><subject>Huntingtin Protein - metabolism</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington's</subject><subject>Inclusion Bodies - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurons - metabolism</subject><subject>Nuclear Proteins - metabolism</subject><subject>Peptides - metabolism</subject><subject>respiration</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctOAyEUhonRaK1uXRpeYCqXGQobE23qJTEx8bImDAPtNDPQwIzat_CRZawaXbkgcDj_-cjPD8AJRhOMBDuzqwlBWCBCptOHhx0wwgVFGeMM7YIR4oJkjFF-AA5jXCGEMMJsHxxQQonAlI7A-_xtHUyMtXfQW9j2nXIdNG-pxHDZu652i7SgDWrRGtdFmIpl3yoHnemDamDsTAu1aZoIlas-b72LUKs-mkGtm_6Tbn1oVTecBllbd14vvatCnRjVJtre6aF7BPasaqI5_trH4Plq_jS7ye7ur29nF3eZzikjGZlqVBqlFSqY4Mm_yBlRmnJucVnaQmiWvoVYbridClxyYhTWpBImDRUVpmNwvuWu-7I1lU7ekhu5DnWrwkZ6Vcu_HVcv5cK_SJ5TgosiASZbgA4-xmDszyxGcshG2pX8lU0aOP394o_8O4wkKLaC17oxm39w8urxkhBU5IR-ABAvoFs</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Ghosh, Rhia</creator><creator>Wood‐Kaczmar, Alison</creator><creator>Dobson, Lucianne</creator><creator>Smith, Edward J.</creator><creator>Sirinathsinghji, Eva C.</creator><creator>Kriston‐Vizi, Janos</creator><creator>Hargreaves, Iain P.</creator><creator>Heaton, Robert</creator><creator>Herrmann, Frank</creator><creator>Abramov, Andrey Y.</creator><creator>Lam, Amanda J.</creator><creator>Heales, Simon J.</creator><creator>Ketteler, Robin</creator><creator>Bates, Gillian P.</creator><creator>Andre, Ralph</creator><creator>Tabrizi, Sarah J.</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>202006</creationdate><title>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</title><author>Ghosh, Rhia ; Wood‐Kaczmar, Alison ; Dobson, Lucianne ; Smith, Edward J. ; Sirinathsinghji, Eva C. ; Kriston‐Vizi, Janos ; Hargreaves, Iain P. ; Heaton, Robert ; Herrmann, Frank ; Abramov, Andrey Y. ; Lam, Amanda J. ; Heales, Simon J. ; Ketteler, Robin ; Bates, Gillian P. ; Andre, Ralph ; Tabrizi, Sarah J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4362-27c0beaca056989029462ac388f1bbf59c60192f8e8f791b82ea1c2d9eeac5d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aggregation</topic><topic>Cells, Cultured</topic><topic>Humans</topic><topic>Huntingtin Protein - metabolism</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington's</topic><topic>Inclusion Bodies - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurons - metabolism</topic><topic>Nuclear Proteins - metabolism</topic><topic>Peptides - metabolism</topic><topic>respiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Rhia</creatorcontrib><creatorcontrib>Wood‐Kaczmar, Alison</creatorcontrib><creatorcontrib>Dobson, Lucianne</creatorcontrib><creatorcontrib>Smith, Edward J.</creatorcontrib><creatorcontrib>Sirinathsinghji, Eva C.</creatorcontrib><creatorcontrib>Kriston‐Vizi, Janos</creatorcontrib><creatorcontrib>Hargreaves, Iain P.</creatorcontrib><creatorcontrib>Heaton, Robert</creatorcontrib><creatorcontrib>Herrmann, Frank</creatorcontrib><creatorcontrib>Abramov, Andrey Y.</creatorcontrib><creatorcontrib>Lam, Amanda J.</creatorcontrib><creatorcontrib>Heales, Simon J.</creatorcontrib><creatorcontrib>Ketteler, Robin</creatorcontrib><creatorcontrib>Bates, Gillian P.</creatorcontrib><creatorcontrib>Andre, Ralph</creatorcontrib><creatorcontrib>Tabrizi, Sarah J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Rhia</au><au>Wood‐Kaczmar, Alison</au><au>Dobson, Lucianne</au><au>Smith, Edward J.</au><au>Sirinathsinghji, Eva C.</au><au>Kriston‐Vizi, Janos</au><au>Hargreaves, Iain P.</au><au>Heaton, Robert</au><au>Herrmann, Frank</au><au>Abramov, Andrey Y.</au><au>Lam, Amanda J.</au><au>Heales, Simon J.</au><au>Ketteler, Robin</au><au>Bates, Gillian P.</au><au>Andre, Ralph</au><au>Tabrizi, Sarah J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2020-06</date><risdate>2020</risdate><volume>34</volume><issue>6</issue><spage>8139</spage><epage>8154</epage><pages>8139-8154</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre‐clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non‐human or non‐neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra‐nuclear inclusions in a polyQ length‐dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction.</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>32329133</pmid><doi>10.1096/fj.201902277RR</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2020-06, Vol.34 (6), p.8139-8154 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8432155 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | aggregation Cells, Cultured Humans Huntingtin Protein - metabolism Huntington Disease - metabolism Huntington's Inclusion Bodies - metabolism mitochondria Mitochondria - metabolism Nerve Tissue Proteins - metabolism Neural Stem Cells - metabolism Neurons - metabolism Nuclear Proteins - metabolism Peptides - metabolism respiration |
title | Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20mutant%20exon%201%20huntingtin%20fragments%20in%20human%20neural%20stem%20cells%20and%20neurons%20causes%20inclusion%20formation%20and%20mitochondrial%20dysfunction&rft.jtitle=The%20FASEB%20journal&rft.au=Ghosh,%20Rhia&rft.date=2020-06&rft.volume=34&rft.issue=6&rft.spage=8139&rft.epage=8154&rft.pages=8139-8154&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201902277RR&rft_dat=%3Cwiley_pubme%3EFSB220542%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32329133&rfr_iscdi=true |