The model-specific Markov embedding problem for symmetric group-based models

We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2021-09, Vol.83 (3), p.33-33, Article 33
Hauptverfasser: Ardiyansyah, Muhammad, Kosta, Dimitra, Kubjas, Kaie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 3
container_start_page 33
container_title Journal of mathematical biology
container_volume 83
creator Ardiyansyah, Muhammad
Kosta, Dimitra
Kubjas, Kaie
description We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.
doi_str_mv 10.1007/s00285-021-01656-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571049314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhi1UVJaFF-CAIvXSi8s4dpz4goRWtFTaigucLScZZ7NN4mBvkHj7mma7pRwqH3yYb37P-CPkgsEXBpBfBYC0yCikjAKTmaTZEVkwwVPKBJMfyAI4cCoLlp6Q0xC2ACzPFPtITrgQSqWcL8j6YYNJ72rsaBixam1bJT-M_-meE-xLrOt2aJLRu7LDPrHOJ-Gl73HnI9Z4N420NAHrOSGckWNruoDn-3tJHr_ePqzu6Pr-2_fVzZpWIhc7KrE0aJmBTCqeCzQ5CKmqwpRWoZLxKC4ArbACmKiNzKE0FUfOLZYMFF-S6zl3nMoe6wqHnTedHn3bG_-inWn1v5Wh3ejGPetCpIopiAGf9wHePU0YdrpvQ4VdZwZ0U9BpljMQisfPXJJP79Ctm_wQ13ulQMqCF0Wk0pmqvAvBoz0Mw0C_ytKzLB1l6d-ydBabLt-ucWj5YycCfAZCLA0N-r9v_yf2F8NaoFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570668388</pqid></control><display><type>article</type><title>The model-specific Markov embedding problem for symmetric group-based models</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ardiyansyah, Muhammad ; Kosta, Dimitra ; Kubjas, Kaie</creator><creatorcontrib>Ardiyansyah, Muhammad ; Kosta, Dimitra ; Kubjas, Kaie</creatorcontrib><description>We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-021-01656-5</identifier><identifier>PMID: 34499233</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Applications of Mathematics ; Biology ; Deoxyribonucleic acid ; DNA ; Eigenvalues ; Embedding ; Evolution ; Markov analysis ; Markov Chains ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Phylogenetics ; Phylogeny ; Probability theory ; Random variables</subject><ispartof>Journal of mathematical biology, 2021-09, Vol.83 (3), p.33-33, Article 33</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</citedby><cites>FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</cites><orcidid>0000-0002-2227-2272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-021-01656-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-021-01656-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34499233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ardiyansyah, Muhammad</creatorcontrib><creatorcontrib>Kosta, Dimitra</creatorcontrib><creatorcontrib>Kubjas, Kaie</creatorcontrib><title>The model-specific Markov embedding problem for symmetric group-based models</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Eigenvalues</subject><subject>Embedding</subject><subject>Evolution</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Probability theory</subject><subject>Random variables</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcFO3DAQhi1UVJaFF-CAIvXSi8s4dpz4goRWtFTaigucLScZZ7NN4mBvkHj7mma7pRwqH3yYb37P-CPkgsEXBpBfBYC0yCikjAKTmaTZEVkwwVPKBJMfyAI4cCoLlp6Q0xC2ACzPFPtITrgQSqWcL8j6YYNJ72rsaBixam1bJT-M_-meE-xLrOt2aJLRu7LDPrHOJ-Gl73HnI9Z4N420NAHrOSGckWNruoDn-3tJHr_ePqzu6Pr-2_fVzZpWIhc7KrE0aJmBTCqeCzQ5CKmqwpRWoZLxKC4ArbACmKiNzKE0FUfOLZYMFF-S6zl3nMoe6wqHnTedHn3bG_-inWn1v5Wh3ejGPetCpIopiAGf9wHePU0YdrpvQ4VdZwZ0U9BpljMQisfPXJJP79Ctm_wQ13ulQMqCF0Wk0pmqvAvBoz0Mw0C_ytKzLB1l6d-ydBabLt-ucWj5YycCfAZCLA0N-r9v_yf2F8NaoFM</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ardiyansyah, Muhammad</creator><creator>Kosta, Dimitra</creator><creator>Kubjas, Kaie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2227-2272</orcidid></search><sort><creationdate>20210901</creationdate><title>The model-specific Markov embedding problem for symmetric group-based models</title><author>Ardiyansyah, Muhammad ; Kosta, Dimitra ; Kubjas, Kaie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Eigenvalues</topic><topic>Embedding</topic><topic>Evolution</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Probability theory</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ardiyansyah, Muhammad</creatorcontrib><creatorcontrib>Kosta, Dimitra</creatorcontrib><creatorcontrib>Kubjas, Kaie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ardiyansyah, Muhammad</au><au>Kosta, Dimitra</au><au>Kubjas, Kaie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The model-specific Markov embedding problem for symmetric group-based models</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>83</volume><issue>3</issue><spage>33</spage><epage>33</epage><pages>33-33</pages><artnum>33</artnum><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34499233</pmid><doi>10.1007/s00285-021-01656-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2227-2272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2021-09, Vol.83 (3), p.33-33, Article 33
issn 0303-6812
1432-1416
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429190
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algebra
Applications of Mathematics
Biology
Deoxyribonucleic acid
DNA
Eigenvalues
Embedding
Evolution
Markov analysis
Markov Chains
Mathematical analysis
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Phylogenetics
Phylogeny
Probability theory
Random variables
title The model-specific Markov embedding problem for symmetric group-based models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20model-specific%20Markov%20embedding%20problem%20for%20symmetric%20group-based%20models&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Ardiyansyah,%20Muhammad&rft.date=2021-09-01&rft.volume=83&rft.issue=3&rft.spage=33&rft.epage=33&rft.pages=33-33&rft.artnum=33&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-021-01656-5&rft_dat=%3Cproquest_pubme%3E2571049314%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570668388&rft_id=info:pmid/34499233&rfr_iscdi=true