The model-specific Markov embedding problem for symmetric group-based models
We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisa...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2021-09, Vol.83 (3), p.33-33, Article 33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33 |
---|---|
container_issue | 3 |
container_start_page | 33 |
container_title | Journal of mathematical biology |
container_volume | 83 |
creator | Ardiyansyah, Muhammad Kosta, Dimitra Kubjas, Kaie |
description | We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model. |
doi_str_mv | 10.1007/s00285-021-01656-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571049314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhi1UVJaFF-CAIvXSi8s4dpz4goRWtFTaigucLScZZ7NN4mBvkHj7mma7pRwqH3yYb37P-CPkgsEXBpBfBYC0yCikjAKTmaTZEVkwwVPKBJMfyAI4cCoLlp6Q0xC2ACzPFPtITrgQSqWcL8j6YYNJ72rsaBixam1bJT-M_-meE-xLrOt2aJLRu7LDPrHOJ-Gl73HnI9Z4N420NAHrOSGckWNruoDn-3tJHr_ePqzu6Pr-2_fVzZpWIhc7KrE0aJmBTCqeCzQ5CKmqwpRWoZLxKC4ArbACmKiNzKE0FUfOLZYMFF-S6zl3nMoe6wqHnTedHn3bG_-inWn1v5Wh3ejGPetCpIopiAGf9wHePU0YdrpvQ4VdZwZ0U9BpljMQisfPXJJP79Ctm_wQ13ulQMqCF0Wk0pmqvAvBoz0Mw0C_ytKzLB1l6d-ydBabLt-ucWj5YycCfAZCLA0N-r9v_yf2F8NaoFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570668388</pqid></control><display><type>article</type><title>The model-specific Markov embedding problem for symmetric group-based models</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ardiyansyah, Muhammad ; Kosta, Dimitra ; Kubjas, Kaie</creator><creatorcontrib>Ardiyansyah, Muhammad ; Kosta, Dimitra ; Kubjas, Kaie</creatorcontrib><description>We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-021-01656-5</identifier><identifier>PMID: 34499233</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Applications of Mathematics ; Biology ; Deoxyribonucleic acid ; DNA ; Eigenvalues ; Embedding ; Evolution ; Markov analysis ; Markov Chains ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Phylogenetics ; Phylogeny ; Probability theory ; Random variables</subject><ispartof>Journal of mathematical biology, 2021-09, Vol.83 (3), p.33-33, Article 33</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</citedby><cites>FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</cites><orcidid>0000-0002-2227-2272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-021-01656-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-021-01656-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34499233$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ardiyansyah, Muhammad</creatorcontrib><creatorcontrib>Kosta, Dimitra</creatorcontrib><creatorcontrib>Kubjas, Kaie</creatorcontrib><title>The model-specific Markov embedding problem for symmetric group-based models</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Biology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Eigenvalues</subject><subject>Embedding</subject><subject>Evolution</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Probability theory</subject><subject>Random variables</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kcFO3DAQhi1UVJaFF-CAIvXSi8s4dpz4goRWtFTaigucLScZZ7NN4mBvkHj7mma7pRwqH3yYb37P-CPkgsEXBpBfBYC0yCikjAKTmaTZEVkwwVPKBJMfyAI4cCoLlp6Q0xC2ACzPFPtITrgQSqWcL8j6YYNJ72rsaBixam1bJT-M_-meE-xLrOt2aJLRu7LDPrHOJ-Gl73HnI9Z4N420NAHrOSGckWNruoDn-3tJHr_ePqzu6Pr-2_fVzZpWIhc7KrE0aJmBTCqeCzQ5CKmqwpRWoZLxKC4ArbACmKiNzKE0FUfOLZYMFF-S6zl3nMoe6wqHnTedHn3bG_-inWn1v5Wh3ejGPetCpIopiAGf9wHePU0YdrpvQ4VdZwZ0U9BpljMQisfPXJJP79Ctm_wQ13ulQMqCF0Wk0pmqvAvBoz0Mw0C_ytKzLB1l6d-ydBabLt-ucWj5YycCfAZCLA0N-r9v_yf2F8NaoFM</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ardiyansyah, Muhammad</creator><creator>Kosta, Dimitra</creator><creator>Kubjas, Kaie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2227-2272</orcidid></search><sort><creationdate>20210901</creationdate><title>The model-specific Markov embedding problem for symmetric group-based models</title><author>Ardiyansyah, Muhammad ; Kosta, Dimitra ; Kubjas, Kaie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-6ebaef1a0569374ea70469c8abf9e969699340ef4f4014da670bac3e33feb1093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Biology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Eigenvalues</topic><topic>Embedding</topic><topic>Evolution</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Probability theory</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ardiyansyah, Muhammad</creatorcontrib><creatorcontrib>Kosta, Dimitra</creatorcontrib><creatorcontrib>Kubjas, Kaie</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ardiyansyah, Muhammad</au><au>Kosta, Dimitra</au><au>Kubjas, Kaie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The model-specific Markov embedding problem for symmetric group-based models</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>83</volume><issue>3</issue><spage>33</spage><epage>33</epage><pages>33-33</pages><artnum>33</artnum><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34499233</pmid><doi>10.1007/s00285-021-01656-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2227-2272</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2021-09, Vol.83 (3), p.33-33, Article 33 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8429190 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algebra Applications of Mathematics Biology Deoxyribonucleic acid DNA Eigenvalues Embedding Evolution Markov analysis Markov Chains Mathematical analysis Mathematical and Computational Biology Mathematics Mathematics and Statistics Matrices (mathematics) Phylogenetics Phylogeny Probability theory Random variables |
title | The model-specific Markov embedding problem for symmetric group-based models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20model-specific%20Markov%20embedding%20problem%20for%20symmetric%20group-based%20models&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Ardiyansyah,%20Muhammad&rft.date=2021-09-01&rft.volume=83&rft.issue=3&rft.spage=33&rft.epage=33&rft.pages=33-33&rft.artnum=33&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-021-01656-5&rft_dat=%3Cproquest_pubme%3E2571049314%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570668388&rft_id=info:pmid/34499233&rfr_iscdi=true |