Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including sk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2021-09, Vol.297 (3), p.101023-101023, Article 101023
Hauptverfasser: Welch, Nicole, Singh, Shashi Shekhar, Kumar, Avinash, Dhruba, Saugato Rahman, Mishra, Saurabh, Sekar, Jinendiran, Bellar, Annette, Attaway, Amy H., Chelluboyina, Aruna, Willard, Belinda B., Li, Ling, Huo, Zhiguang, Karnik, Sadashiva S., Esser, Karyn, Longworth, Michelle S., Shah, Yatrik M., Davuluri, Gangarao, Pal, Ranadip, Dasarathy, Srinivasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101023
container_issue 3
container_start_page 101023
container_title The Journal of biological chemistry
container_volume 297
creator Welch, Nicole
Singh, Shashi Shekhar
Kumar, Avinash
Dhruba, Saugato Rahman
Mishra, Saurabh
Sekar, Jinendiran
Bellar, Annette
Attaway, Amy H.
Chelluboyina, Aruna
Willard, Belinda B.
Li, Ling
Huo, Zhiguang
Karnik, Sadashiva S.
Esser, Karyn
Longworth, Michelle S.
Shah, Yatrik M.
Davuluri, Gangarao
Pal, Ranadip
Dasarathy, Srinivasan
description Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.
doi_str_mv 10.1016/j.jbc.2021.101023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8424232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925821008255</els_id><sourcerecordid>2558089860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-4511db1674657137a0a7419274aac58da94f036ccebc84a334cdb7dad98754c83</originalsourceid><addsrcrecordid>eNp9UU1rHCEYltLQbNP-gF6Kx15mq6Mz41AolNCPQKCXBHKTd_TdjVtHt-oE9th_XpdNQ3upgqLv86HvQ8gbztac8f79br2bzLplLT-eWSuekRVnSjSi43fPyYrVSjO2nTonL3PesTrkyF-QcyHr7Hq5Ir-uQsFtgoKWzosvLs7OZAoB_CG7TJ3FUNzGYaZz9GgWD4l6CDYb2CPdYypLmqDyQqZ2SS5s6f2hXsM8x4CzA-oCzT_QYwFfLbLxWOWr2yGWZcL8ipxtwGd8_bhfkNsvn28uvzXX379eXX66bozseGnqwu3E-0H23cDFAAwGycd2kACmUxZGuWGiNwYnoyQIIY2dBgt2VEMnjRIX5ONJd79MM1pT_5XA631yM6SDjuD0v5Xg7vU2PmglW9mKtgq8exRI8eeCuejZZYO-dgPjknXbdYqpUfWsQvkJalLMOeHmyYYzfYxO73SNTh-j06foKuft3-97YvzJqgI-nABYu_TgMOlsHAaD1iU0Rdvo_iP_G1sirmg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558089860</pqid></control><display><type>article</type><title>Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Welch, Nicole ; Singh, Shashi Shekhar ; Kumar, Avinash ; Dhruba, Saugato Rahman ; Mishra, Saurabh ; Sekar, Jinendiran ; Bellar, Annette ; Attaway, Amy H. ; Chelluboyina, Aruna ; Willard, Belinda B. ; Li, Ling ; Huo, Zhiguang ; Karnik, Sadashiva S. ; Esser, Karyn ; Longworth, Michelle S. ; Shah, Yatrik M. ; Davuluri, Gangarao ; Pal, Ranadip ; Dasarathy, Srinivasan</creator><creatorcontrib>Welch, Nicole ; Singh, Shashi Shekhar ; Kumar, Avinash ; Dhruba, Saugato Rahman ; Mishra, Saurabh ; Sekar, Jinendiran ; Bellar, Annette ; Attaway, Amy H. ; Chelluboyina, Aruna ; Willard, Belinda B. ; Li, Ling ; Huo, Zhiguang ; Karnik, Sadashiva S. ; Esser, Karyn ; Longworth, Michelle S. ; Shah, Yatrik M. ; Davuluri, Gangarao ; Pal, Ranadip ; Dasarathy, Srinivasan</creatorcontrib><description>Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2021.101023</identifier><identifier>PMID: 34343564</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; bioinformatics ; Flow Cytometry ; Genomics ; glycosylation ; Humans ; Hyperammonemia - genetics ; Hyperammonemia - metabolism ; hypoxia-inducible factor ; Immunoblotting - methods ; Mice ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - metabolism ; Proteomics ; Real-Time Polymerase Chain Reaction ; Reproducibility of Results ; senescence ; skeletal muscle metabolism ; Transcriptome</subject><ispartof>The Journal of biological chemistry, 2021-09, Vol.297 (3), p.101023-101023, Article 101023</ispartof><rights>2021 The Authors</rights><rights>Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-4511db1674657137a0a7419274aac58da94f036ccebc84a334cdb7dad98754c83</citedby><cites>FETCH-LOGICAL-c451t-4511db1674657137a0a7419274aac58da94f036ccebc84a334cdb7dad98754c83</cites><orcidid>0000-0002-9294-4855 ; 0000-0002-4655-5146 ; 0000-0003-1774-0104 ; 0000-0002-2487-4816 ; 0000-0001-5947-6757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424232/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424232/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34343564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Welch, Nicole</creatorcontrib><creatorcontrib>Singh, Shashi Shekhar</creatorcontrib><creatorcontrib>Kumar, Avinash</creatorcontrib><creatorcontrib>Dhruba, Saugato Rahman</creatorcontrib><creatorcontrib>Mishra, Saurabh</creatorcontrib><creatorcontrib>Sekar, Jinendiran</creatorcontrib><creatorcontrib>Bellar, Annette</creatorcontrib><creatorcontrib>Attaway, Amy H.</creatorcontrib><creatorcontrib>Chelluboyina, Aruna</creatorcontrib><creatorcontrib>Willard, Belinda B.</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Huo, Zhiguang</creatorcontrib><creatorcontrib>Karnik, Sadashiva S.</creatorcontrib><creatorcontrib>Esser, Karyn</creatorcontrib><creatorcontrib>Longworth, Michelle S.</creatorcontrib><creatorcontrib>Shah, Yatrik M.</creatorcontrib><creatorcontrib>Davuluri, Gangarao</creatorcontrib><creatorcontrib>Pal, Ranadip</creatorcontrib><creatorcontrib>Dasarathy, Srinivasan</creatorcontrib><title>Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.</description><subject>Animals</subject><subject>bioinformatics</subject><subject>Flow Cytometry</subject><subject>Genomics</subject><subject>glycosylation</subject><subject>Humans</subject><subject>Hyperammonemia - genetics</subject><subject>Hyperammonemia - metabolism</subject><subject>hypoxia-inducible factor</subject><subject>Immunoblotting - methods</subject><subject>Mice</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Proteomics</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reproducibility of Results</subject><subject>senescence</subject><subject>skeletal muscle metabolism</subject><subject>Transcriptome</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1rHCEYltLQbNP-gF6Kx15mq6Mz41AolNCPQKCXBHKTd_TdjVtHt-oE9th_XpdNQ3upgqLv86HvQ8gbztac8f79br2bzLplLT-eWSuekRVnSjSi43fPyYrVSjO2nTonL3PesTrkyF-QcyHr7Hq5Ir-uQsFtgoKWzosvLs7OZAoB_CG7TJ3FUNzGYaZz9GgWD4l6CDYb2CPdYypLmqDyQqZ2SS5s6f2hXsM8x4CzA-oCzT_QYwFfLbLxWOWr2yGWZcL8ipxtwGd8_bhfkNsvn28uvzXX379eXX66bozseGnqwu3E-0H23cDFAAwGycd2kACmUxZGuWGiNwYnoyQIIY2dBgt2VEMnjRIX5ONJd79MM1pT_5XA631yM6SDjuD0v5Xg7vU2PmglW9mKtgq8exRI8eeCuejZZYO-dgPjknXbdYqpUfWsQvkJalLMOeHmyYYzfYxO73SNTh-j06foKuft3-97YvzJqgI-nABYu_TgMOlsHAaD1iU0Rdvo_iP_G1sirmg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Welch, Nicole</creator><creator>Singh, Shashi Shekhar</creator><creator>Kumar, Avinash</creator><creator>Dhruba, Saugato Rahman</creator><creator>Mishra, Saurabh</creator><creator>Sekar, Jinendiran</creator><creator>Bellar, Annette</creator><creator>Attaway, Amy H.</creator><creator>Chelluboyina, Aruna</creator><creator>Willard, Belinda B.</creator><creator>Li, Ling</creator><creator>Huo, Zhiguang</creator><creator>Karnik, Sadashiva S.</creator><creator>Esser, Karyn</creator><creator>Longworth, Michelle S.</creator><creator>Shah, Yatrik M.</creator><creator>Davuluri, Gangarao</creator><creator>Pal, Ranadip</creator><creator>Dasarathy, Srinivasan</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9294-4855</orcidid><orcidid>https://orcid.org/0000-0002-4655-5146</orcidid><orcidid>https://orcid.org/0000-0003-1774-0104</orcidid><orcidid>https://orcid.org/0000-0002-2487-4816</orcidid><orcidid>https://orcid.org/0000-0001-5947-6757</orcidid></search><sort><creationdate>20210901</creationdate><title>Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes</title><author>Welch, Nicole ; Singh, Shashi Shekhar ; Kumar, Avinash ; Dhruba, Saugato Rahman ; Mishra, Saurabh ; Sekar, Jinendiran ; Bellar, Annette ; Attaway, Amy H. ; Chelluboyina, Aruna ; Willard, Belinda B. ; Li, Ling ; Huo, Zhiguang ; Karnik, Sadashiva S. ; Esser, Karyn ; Longworth, Michelle S. ; Shah, Yatrik M. ; Davuluri, Gangarao ; Pal, Ranadip ; Dasarathy, Srinivasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-4511db1674657137a0a7419274aac58da94f036ccebc84a334cdb7dad98754c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>bioinformatics</topic><topic>Flow Cytometry</topic><topic>Genomics</topic><topic>glycosylation</topic><topic>Humans</topic><topic>Hyperammonemia - genetics</topic><topic>Hyperammonemia - metabolism</topic><topic>hypoxia-inducible factor</topic><topic>Immunoblotting - methods</topic><topic>Mice</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Proteomics</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reproducibility of Results</topic><topic>senescence</topic><topic>skeletal muscle metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welch, Nicole</creatorcontrib><creatorcontrib>Singh, Shashi Shekhar</creatorcontrib><creatorcontrib>Kumar, Avinash</creatorcontrib><creatorcontrib>Dhruba, Saugato Rahman</creatorcontrib><creatorcontrib>Mishra, Saurabh</creatorcontrib><creatorcontrib>Sekar, Jinendiran</creatorcontrib><creatorcontrib>Bellar, Annette</creatorcontrib><creatorcontrib>Attaway, Amy H.</creatorcontrib><creatorcontrib>Chelluboyina, Aruna</creatorcontrib><creatorcontrib>Willard, Belinda B.</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Huo, Zhiguang</creatorcontrib><creatorcontrib>Karnik, Sadashiva S.</creatorcontrib><creatorcontrib>Esser, Karyn</creatorcontrib><creatorcontrib>Longworth, Michelle S.</creatorcontrib><creatorcontrib>Shah, Yatrik M.</creatorcontrib><creatorcontrib>Davuluri, Gangarao</creatorcontrib><creatorcontrib>Pal, Ranadip</creatorcontrib><creatorcontrib>Dasarathy, Srinivasan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welch, Nicole</au><au>Singh, Shashi Shekhar</au><au>Kumar, Avinash</au><au>Dhruba, Saugato Rahman</au><au>Mishra, Saurabh</au><au>Sekar, Jinendiran</au><au>Bellar, Annette</au><au>Attaway, Amy H.</au><au>Chelluboyina, Aruna</au><au>Willard, Belinda B.</au><au>Li, Ling</au><au>Huo, Zhiguang</au><au>Karnik, Sadashiva S.</au><au>Esser, Karyn</au><au>Longworth, Michelle S.</au><au>Shah, Yatrik M.</au><au>Davuluri, Gangarao</au><au>Pal, Ranadip</au><au>Dasarathy, Srinivasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>297</volume><issue>3</issue><spage>101023</spage><epage>101023</epage><pages>101023-101023</pages><artnum>101023</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34343564</pmid><doi>10.1016/j.jbc.2021.101023</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9294-4855</orcidid><orcidid>https://orcid.org/0000-0002-4655-5146</orcidid><orcidid>https://orcid.org/0000-0003-1774-0104</orcidid><orcidid>https://orcid.org/0000-0002-2487-4816</orcidid><orcidid>https://orcid.org/0000-0001-5947-6757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2021-09, Vol.297 (3), p.101023-101023, Article 101023
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8424232
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
bioinformatics
Flow Cytometry
Genomics
glycosylation
Humans
Hyperammonemia - genetics
Hyperammonemia - metabolism
hypoxia-inducible factor
Immunoblotting - methods
Mice
Muscle Fibers, Skeletal - metabolism
Muscle, Skeletal - metabolism
Proteomics
Real-Time Polymerase Chain Reaction
Reproducibility of Results
senescence
skeletal muscle metabolism
Transcriptome
title Integrated multiomics analysis identifies molecular landscape perturbations during hyperammonemia in skeletal muscle and myotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20multiomics%20analysis%20identifies%20molecular%20landscape%20perturbations%20during%20hyperammonemia%20in%20skeletal%20muscle%20and%20myotubes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Welch,%20Nicole&rft.date=2021-09-01&rft.volume=297&rft.issue=3&rft.spage=101023&rft.epage=101023&rft.pages=101023-101023&rft.artnum=101023&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2021.101023&rft_dat=%3Cproquest_pubme%3E2558089860%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558089860&rft_id=info:pmid/34343564&rft_els_id=S0021925821008255&rfr_iscdi=true