Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics
The autophagy‑lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G‑associated kinase (GAK) is involved in the regulation of cla...
Gespeichert in:
Veröffentlicht in: | International journal of molecular medicine 2021-10, Vol.48 (4), p.1, Article 195 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | International journal of molecular medicine |
container_volume | 48 |
creator | Miyazaki, Masaya Hiramoto, Masaki Takano, Naoharu Kokuba, Hiroko Takemura, Jun Tokuhisa, Mayumi Hino, Hirotsugu Kazama, Hiromi Miyazawa, Keisuke |
description | The autophagy‑lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G‑associated kinase (GAK) is involved in the regulation of clathrin‑dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy‑lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome‑lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho‑associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO‑mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy. |
doi_str_mv | 10.3892/ijmm.2021.5028 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8416139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A676153029</galeid><sourcerecordid>A676153029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-790f6ecf8db900a9519760a2e0881dd71087196ada90d8c7d998533031f501013</originalsourceid><addsrcrecordid>eNptkcFrFDEUh4MottZePcqA51nfSyaZ5CIspVax4KUFbyE7yUyzzCRrkhH3v-8MtlWh5JDw8nsfL_kIeYewYVLRj34_TRsKFDccqHxBTrFVWNOm-fFyOSO0NWu5OCFvct4DUN4o-ZqcsKYREpCektsbkwZXnK2sz2k-FB9DFfvqavutysUMwRSXKzOXeLgzg--qfpx_V7vjGi9z2vkwVOMxxxwnM1b2GMzku_yWvOrNmN35w35Gbj9f3lx8qa-_X3292F7XHedY6lZBL1zXS7tTAEZxVK0AQx1Iida2CLJFJYw1CqzsWquU5IwBw54DArIz8ukP9zDvJmc7F0oyoz4kP5l01NF4_f9N8Hd6iL-0bFAgUwvgwwMgxZ-zy0Xv45zCMrOmXChGOWvwb2owo9M-9HGBdZPPnd6KViBnQFfW5pnUsqxb_iQG1_ul_lxDl2LOyfVPgyPo1a5e7erVrl7tLg3v_33uU_xRJ7sH64OgGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2569325341</pqid></control><display><type>article</type><title>Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics</title><source>Spandidos Publications Journals</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Miyazaki, Masaya ; Hiramoto, Masaki ; Takano, Naoharu ; Kokuba, Hiroko ; Takemura, Jun ; Tokuhisa, Mayumi ; Hino, Hirotsugu ; Kazama, Hiromi ; Miyazawa, Keisuke</creator><creatorcontrib>Miyazaki, Masaya ; Hiramoto, Masaki ; Takano, Naoharu ; Kokuba, Hiroko ; Takemura, Jun ; Tokuhisa, Mayumi ; Hino, Hirotsugu ; Kazama, Hiromi ; Miyazawa, Keisuke</creatorcontrib><description>The autophagy‑lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G‑associated kinase (GAK) is involved in the regulation of clathrin‑dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy‑lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome‑lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho‑associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO‑mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy.</description><identifier>ISSN: 1107-3756</identifier><identifier>EISSN: 1791-244X</identifier><identifier>DOI: 10.3892/ijmm.2021.5028</identifier><identifier>PMID: 34468012</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>A549 Cells ; Actomyosin - metabolism ; Amino acids ; Antibodies ; Autophagosomes - metabolism ; Autophagy ; Autophagy - physiology ; Biotechnology industry ; Cancer ; Cell cycle ; Cloning ; CRISPR ; Genetic aspects ; Genomes ; Genomics ; Homeostasis ; Humans ; Intracellular Signaling Peptides and Proteins - metabolism ; Kinases ; Laboratories ; Lysosomes - metabolism ; Pharmaceutical industry ; Protein kinases ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; rho-Associated Kinases - metabolism ; Scientific equipment and supplies industry ; Single nucleotide polymorphisms</subject><ispartof>International journal of molecular medicine, 2021-10, Vol.48 (4), p.1, Article 195</ispartof><rights>COPYRIGHT 2021 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2021</rights><rights>Copyright: © Miyazaki et al. 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-790f6ecf8db900a9519760a2e0881dd71087196ada90d8c7d998533031f501013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34468012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miyazaki, Masaya</creatorcontrib><creatorcontrib>Hiramoto, Masaki</creatorcontrib><creatorcontrib>Takano, Naoharu</creatorcontrib><creatorcontrib>Kokuba, Hiroko</creatorcontrib><creatorcontrib>Takemura, Jun</creatorcontrib><creatorcontrib>Tokuhisa, Mayumi</creatorcontrib><creatorcontrib>Hino, Hirotsugu</creatorcontrib><creatorcontrib>Kazama, Hiromi</creatorcontrib><creatorcontrib>Miyazawa, Keisuke</creatorcontrib><title>Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics</title><title>International journal of molecular medicine</title><addtitle>Int J Mol Med</addtitle><description>The autophagy‑lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G‑associated kinase (GAK) is involved in the regulation of clathrin‑dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy‑lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome‑lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho‑associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO‑mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy.</description><subject>A549 Cells</subject><subject>Actomyosin - metabolism</subject><subject>Amino acids</subject><subject>Antibodies</subject><subject>Autophagosomes - metabolism</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Biotechnology industry</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lysosomes - metabolism</subject><subject>Pharmaceutical industry</subject><subject>Protein kinases</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>rho-Associated Kinases - metabolism</subject><subject>Scientific equipment and supplies industry</subject><subject>Single nucleotide polymorphisms</subject><issn>1107-3756</issn><issn>1791-244X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkcFrFDEUh4MottZePcqA51nfSyaZ5CIspVax4KUFbyE7yUyzzCRrkhH3v-8MtlWh5JDw8nsfL_kIeYewYVLRj34_TRsKFDccqHxBTrFVWNOm-fFyOSO0NWu5OCFvct4DUN4o-ZqcsKYREpCektsbkwZXnK2sz2k-FB9DFfvqavutysUMwRSXKzOXeLgzg--qfpx_V7vjGi9z2vkwVOMxxxwnM1b2GMzku_yWvOrNmN35w35Gbj9f3lx8qa-_X3292F7XHedY6lZBL1zXS7tTAEZxVK0AQx1Iida2CLJFJYw1CqzsWquU5IwBw54DArIz8ukP9zDvJmc7F0oyoz4kP5l01NF4_f9N8Hd6iL-0bFAgUwvgwwMgxZ-zy0Xv45zCMrOmXChGOWvwb2owo9M-9HGBdZPPnd6KViBnQFfW5pnUsqxb_iQG1_ul_lxDl2LOyfVPgyPo1a5e7erVrl7tLg3v_33uU_xRJ7sH64OgGw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Miyazaki, Masaya</creator><creator>Hiramoto, Masaki</creator><creator>Takano, Naoharu</creator><creator>Kokuba, Hiroko</creator><creator>Takemura, Jun</creator><creator>Tokuhisa, Mayumi</creator><creator>Hino, Hirotsugu</creator><creator>Kazama, Hiromi</creator><creator>Miyazawa, Keisuke</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20211001</creationdate><title>Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics</title><author>Miyazaki, Masaya ; Hiramoto, Masaki ; Takano, Naoharu ; Kokuba, Hiroko ; Takemura, Jun ; Tokuhisa, Mayumi ; Hino, Hirotsugu ; Kazama, Hiromi ; Miyazawa, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-790f6ecf8db900a9519760a2e0881dd71087196ada90d8c7d998533031f501013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A549 Cells</topic><topic>Actomyosin - metabolism</topic><topic>Amino acids</topic><topic>Antibodies</topic><topic>Autophagosomes - metabolism</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Biotechnology industry</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lysosomes - metabolism</topic><topic>Pharmaceutical industry</topic><topic>Protein kinases</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>rho-Associated Kinases - metabolism</topic><topic>Scientific equipment and supplies industry</topic><topic>Single nucleotide polymorphisms</topic><toplevel>online_resources</toplevel><creatorcontrib>Miyazaki, Masaya</creatorcontrib><creatorcontrib>Hiramoto, Masaki</creatorcontrib><creatorcontrib>Takano, Naoharu</creatorcontrib><creatorcontrib>Kokuba, Hiroko</creatorcontrib><creatorcontrib>Takemura, Jun</creatorcontrib><creatorcontrib>Tokuhisa, Mayumi</creatorcontrib><creatorcontrib>Hino, Hirotsugu</creatorcontrib><creatorcontrib>Kazama, Hiromi</creatorcontrib><creatorcontrib>Miyazawa, Keisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miyazaki, Masaya</au><au>Hiramoto, Masaki</au><au>Takano, Naoharu</au><au>Kokuba, Hiroko</au><au>Takemura, Jun</au><au>Tokuhisa, Mayumi</au><au>Hino, Hirotsugu</au><au>Kazama, Hiromi</au><au>Miyazawa, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics</atitle><jtitle>International journal of molecular medicine</jtitle><addtitle>Int J Mol Med</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>48</volume><issue>4</issue><spage>1</spage><pages>1-</pages><artnum>195</artnum><issn>1107-3756</issn><eissn>1791-244X</eissn><abstract>The autophagy‑lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G‑associated kinase (GAK) is involved in the regulation of clathrin‑dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy‑lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome‑lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho‑associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO‑mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>34468012</pmid><doi>10.3892/ijmm.2021.5028</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1107-3756 |
ispartof | International journal of molecular medicine, 2021-10, Vol.48 (4), p.1, Article 195 |
issn | 1107-3756 1791-244X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8416139 |
source | Spandidos Publications Journals; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | A549 Cells Actomyosin - metabolism Amino acids Antibodies Autophagosomes - metabolism Autophagy Autophagy - physiology Biotechnology industry Cancer Cell cycle Cloning CRISPR Genetic aspects Genomes Genomics Homeostasis Humans Intracellular Signaling Peptides and Proteins - metabolism Kinases Laboratories Lysosomes - metabolism Pharmaceutical industry Protein kinases Protein Serine-Threonine Kinases - metabolism Proteins rho-Associated Kinases - metabolism Scientific equipment and supplies industry Single nucleotide polymorphisms |
title | Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20disruption%20of%20GAK%20stagnates%20autophagic%20flux%20by%20disturbing%20lysosomal%20dynamics&rft.jtitle=International%20journal%20of%20molecular%20medicine&rft.au=Miyazaki,%20Masaya&rft.date=2021-10-01&rft.volume=48&rft.issue=4&rft.spage=1&rft.pages=1-&rft.artnum=195&rft.issn=1107-3756&rft.eissn=1791-244X&rft_id=info:doi/10.3892/ijmm.2021.5028&rft_dat=%3Cgale_pubme%3EA676153029%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2569325341&rft_id=info:pmid/34468012&rft_galeid=A676153029&rfr_iscdi=true |