Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans

Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome research 2021-09, Vol.31 (9), p.1602-1613
Hauptverfasser: Rajaei, Moein, Saxena, Ayush Shekhar, Johnson, Lindsay M, Snyder, Michael C, Crombie, Timothy A, Tanny, Robyn E, Andersen, Erik C, Joyner-Matos, Joanna, Baer, Charles F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1613
container_issue 9
container_start_page 1602
container_title Genome research
container_volume 31
creator Rajaei, Moein
Saxena, Ayush Shekhar
Johnson, Lindsay M
Snyder, Michael C
Crombie, Timothy A
Tanny, Robyn E
Andersen, Erik C
Joyner-Matos, Joanna
Baer, Charles F
description Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from MA lines carrying a mutation ( - ) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between - , its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in - , consistent with studies in other organisms in which environmental stress increased the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.
doi_str_mv 10.1101/gr.275372.121
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8415377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571489749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e8edd0ec8a7634bbd8dc760383cd8382486591ff4d7a83e02e141f71239251583</originalsourceid><addsrcrecordid>eNpdkk1vFSEUhidGY2t16daQuHHhXGFgBmZj0ty0alLjRteEgTO3NAyMfNTeH-b_k-utjbqCcJ7zng_epnlJ8IYQTN7t4qbjPeXdhnTkUXNKeja2PRvGx_WOhWhH3JOT5llKNxhjyoR42pxQxnBFutPm5-eS1WSdzXsUZrQEH3zRDkK2BlCEFVROb5EPGYU7a1S2t4BSjpDqK9ytTlmfUL4GZGzSlVde79EE-QeAR05NIaoc4r5VWpelOJXBoKXWzDbUROXN72SvconKIeUcOGjnCN8LHJTSCjrHsiDr0XaDanCnfHrePJmVS_Di_jxrvl1efN1-bK--fPi0Pb9qNeVDbkGAMRi0UHygbJqMMJoPmAqqjaCiY2LoRzLPzHAlKOAOCCMzJx0du570gp4174-6a5kWMBp8rl3KNdpFxb0Mysp_I95ey124lYKR-ie8Cry5F4ihTpSyXOqawDnlIZQku344VGJ8rOjr_9CbUKKv41WKEyZGzg5Ue6R0DClFmB-aIVgeDCF3UR4NIashKv_q7wke6D8OoL8Aezu2tg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571489749</pqid></control><display><type>article</type><title>Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rajaei, Moein ; Saxena, Ayush Shekhar ; Johnson, Lindsay M ; Snyder, Michael C ; Crombie, Timothy A ; Tanny, Robyn E ; Andersen, Erik C ; Joyner-Matos, Joanna ; Baer, Charles F</creator><creatorcontrib>Rajaei, Moein ; Saxena, Ayush Shekhar ; Johnson, Lindsay M ; Snyder, Michael C ; Crombie, Timothy A ; Tanny, Robyn E ; Andersen, Erik C ; Joyner-Matos, Joanna ; Baer, Charles F</creatorcontrib><description>Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from MA lines carrying a mutation ( - ) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between - , its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in - , consistent with studies in other organisms in which environmental stress increased the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.275372.121</identifier><identifier>PMID: 34404692</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Alleles ; Animals ; Caenorhabditis elegans - genetics ; Environmental stress ; Gene deletion ; Gene frequency ; Genetic diversity ; Genomes ; Insertion ; Laboratories ; Mutation ; Natural selection ; Nucleotide sequence ; Oxidative stress ; Oxidative Stress - genetics ; Reactive oxygen species</subject><ispartof>Genome research, 2021-09, Vol.31 (9), p.1602-1613</ispartof><rights>2021 Rajaei et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Sep 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e8edd0ec8a7634bbd8dc760383cd8382486591ff4d7a83e02e141f71239251583</citedby><cites>FETCH-LOGICAL-c376t-e8edd0ec8a7634bbd8dc760383cd8382486591ff4d7a83e02e141f71239251583</cites><orcidid>0000-0002-0611-3909 ; 0000-0002-1190-3905 ; 0000-0003-0229-9651 ; 0000-0002-0140-5814 ; 0000-0002-5645-4154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415377/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8415377/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34404692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajaei, Moein</creatorcontrib><creatorcontrib>Saxena, Ayush Shekhar</creatorcontrib><creatorcontrib>Johnson, Lindsay M</creatorcontrib><creatorcontrib>Snyder, Michael C</creatorcontrib><creatorcontrib>Crombie, Timothy A</creatorcontrib><creatorcontrib>Tanny, Robyn E</creatorcontrib><creatorcontrib>Andersen, Erik C</creatorcontrib><creatorcontrib>Joyner-Matos, Joanna</creatorcontrib><creatorcontrib>Baer, Charles F</creatorcontrib><title>Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from MA lines carrying a mutation ( - ) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between - , its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in - , consistent with studies in other organisms in which environmental stress increased the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.</description><subject>Alleles</subject><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Environmental stress</subject><subject>Gene deletion</subject><subject>Gene frequency</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Insertion</subject><subject>Laboratories</subject><subject>Mutation</subject><subject>Natural selection</subject><subject>Nucleotide sequence</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>Reactive oxygen species</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkk1vFSEUhidGY2t16daQuHHhXGFgBmZj0ty0alLjRteEgTO3NAyMfNTeH-b_k-utjbqCcJ7zng_epnlJ8IYQTN7t4qbjPeXdhnTkUXNKeja2PRvGx_WOhWhH3JOT5llKNxhjyoR42pxQxnBFutPm5-eS1WSdzXsUZrQEH3zRDkK2BlCEFVROb5EPGYU7a1S2t4BSjpDqK9ytTlmfUL4GZGzSlVde79EE-QeAR05NIaoc4r5VWpelOJXBoKXWzDbUROXN72SvconKIeUcOGjnCN8LHJTSCjrHsiDr0XaDanCnfHrePJmVS_Di_jxrvl1efN1-bK--fPi0Pb9qNeVDbkGAMRi0UHygbJqMMJoPmAqqjaCiY2LoRzLPzHAlKOAOCCMzJx0du570gp4174-6a5kWMBp8rl3KNdpFxb0Mysp_I95ey124lYKR-ie8Cry5F4ihTpSyXOqawDnlIZQku344VGJ8rOjr_9CbUKKv41WKEyZGzg5Ue6R0DClFmB-aIVgeDCF3UR4NIashKv_q7wke6D8OoL8Aezu2tg</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Rajaei, Moein</creator><creator>Saxena, Ayush Shekhar</creator><creator>Johnson, Lindsay M</creator><creator>Snyder, Michael C</creator><creator>Crombie, Timothy A</creator><creator>Tanny, Robyn E</creator><creator>Andersen, Erik C</creator><creator>Joyner-Matos, Joanna</creator><creator>Baer, Charles F</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0611-3909</orcidid><orcidid>https://orcid.org/0000-0002-1190-3905</orcidid><orcidid>https://orcid.org/0000-0003-0229-9651</orcidid><orcidid>https://orcid.org/0000-0002-0140-5814</orcidid><orcidid>https://orcid.org/0000-0002-5645-4154</orcidid></search><sort><creationdate>202109</creationdate><title>Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans</title><author>Rajaei, Moein ; Saxena, Ayush Shekhar ; Johnson, Lindsay M ; Snyder, Michael C ; Crombie, Timothy A ; Tanny, Robyn E ; Andersen, Erik C ; Joyner-Matos, Joanna ; Baer, Charles F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e8edd0ec8a7634bbd8dc760383cd8382486591ff4d7a83e02e141f71239251583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Environmental stress</topic><topic>Gene deletion</topic><topic>Gene frequency</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Insertion</topic><topic>Laboratories</topic><topic>Mutation</topic><topic>Natural selection</topic><topic>Nucleotide sequence</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>Reactive oxygen species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaei, Moein</creatorcontrib><creatorcontrib>Saxena, Ayush Shekhar</creatorcontrib><creatorcontrib>Johnson, Lindsay M</creatorcontrib><creatorcontrib>Snyder, Michael C</creatorcontrib><creatorcontrib>Crombie, Timothy A</creatorcontrib><creatorcontrib>Tanny, Robyn E</creatorcontrib><creatorcontrib>Andersen, Erik C</creatorcontrib><creatorcontrib>Joyner-Matos, Joanna</creatorcontrib><creatorcontrib>Baer, Charles F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaei, Moein</au><au>Saxena, Ayush Shekhar</au><au>Johnson, Lindsay M</au><au>Snyder, Michael C</au><au>Crombie, Timothy A</au><au>Tanny, Robyn E</au><au>Andersen, Erik C</au><au>Joyner-Matos, Joanna</au><au>Baer, Charles F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2021-09</date><risdate>2021</risdate><volume>31</volume><issue>9</issue><spage>1602</spage><epage>1613</epage><pages>1602-1613</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from MA lines carrying a mutation ( - ) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between - , its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in - , consistent with studies in other organisms in which environmental stress increased the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>34404692</pmid><doi>10.1101/gr.275372.121</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0611-3909</orcidid><orcidid>https://orcid.org/0000-0002-1190-3905</orcidid><orcidid>https://orcid.org/0000-0003-0229-9651</orcidid><orcidid>https://orcid.org/0000-0002-0140-5814</orcidid><orcidid>https://orcid.org/0000-0002-5645-4154</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1088-9051
ispartof Genome research, 2021-09, Vol.31 (9), p.1602-1613
issn 1088-9051
1549-5469
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8415377
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Alleles
Animals
Caenorhabditis elegans - genetics
Environmental stress
Gene deletion
Gene frequency
Genetic diversity
Genomes
Insertion
Laboratories
Mutation
Natural selection
Nucleotide sequence
Oxidative stress
Oxidative Stress - genetics
Reactive oxygen species
title Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutability%20of%20mononucleotide%20repeats,%20not%20oxidative%20stress,%20explains%20the%20discrepancy%20between%20laboratory-accumulated%20mutations%20and%20the%20natural%20allele-frequency%20spectrum%20in%20C.%20elegans&rft.jtitle=Genome%20research&rft.au=Rajaei,%20Moein&rft.date=2021-09&rft.volume=31&rft.issue=9&rft.spage=1602&rft.epage=1613&rft.pages=1602-1613&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.275372.121&rft_dat=%3Cproquest_pubme%3E2571489749%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571489749&rft_id=info:pmid/34404692&rfr_iscdi=true