3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution

Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2020-12, Vol.13 (12), p.3241-3247
Hauptverfasser: Xu, Congcong, Zhang, Kaiming, Yin, Hongran, Li, Zhefeng, Krasnoslobodtsev, Alexey, Zheng, Zhen, Ji, Zhouxiang, Guo, Sijin, Li, Shanshan, Chiu, Wah, Guo, Peixuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3247
container_issue 12
container_start_page 3241
container_title Nano research
container_volume 13
creator Xu, Congcong
Zhang, Kaiming
Yin, Hongran
Li, Zhefeng
Krasnoslobodtsev, Alexey
Zheng, Zhen
Ji, Zhouxiang
Guo, Sijin
Li, Shanshan
Chiu, Wah
Guo, Peixuan
description Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.
doi_str_mv 10.1007/s12274-020-2996-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8412138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604250637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhgdRbK3-ADcSdD2ak8nkYyOUVluhKIiuQyYfd1LmJmOSudB_71ymrbowmwTOc55zwts0rwG_B4z5hwKEcNpiglsiJWvhSXMKUooWr-fpwxsIPWlelHKLMSNAxfPmpKNUUAbstMndJfr-9RxFHZPRO4d8yshFo-eyTLqGFJGOFpUxuMmGuEPJo_HO5jSPaQgGDSHt0-TMMrmCakJhP-d0cKiODoWIDuGQjowNpeYwLEfhy-aZ11Nxr-7vs-bn508_Lq7bm29XXy7Ob1pDJa8tc4ZY7b3XklsrvRBO9j0RjHYEDDccJHXeAzOWMW-7wVAOFnOBe2psT7qz5uPmnZdh76xxsWY9qTmHvc53Kumg_q3EMKpdOihBgUAnVsHbTZBKDaqYUJ0ZTYrRmaqAcwy0X6F391Ny-rW4UtVtWnJcP6YIw5T0mHV8pWCjTE6lZOcf1wCsjlmqLUu1ZqmOWSpYe978vf9jx0N4K0A2oKyluHP5z-j_W38D-KesJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604250637</pqid></control><display><type>article</type><title>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</title><source>SpringerLink Journals (MCLS)</source><creator>Xu, Congcong ; Zhang, Kaiming ; Yin, Hongran ; Li, Zhefeng ; Krasnoslobodtsev, Alexey ; Zheng, Zhen ; Ji, Zhouxiang ; Guo, Sijin ; Li, Shanshan ; Chiu, Wah ; Guo, Peixuan</creator><creatorcontrib>Xu, Congcong ; Zhang, Kaiming ; Yin, Hongran ; Li, Zhefeng ; Krasnoslobodtsev, Alexey ; Zheng, Zhen ; Ji, Zhouxiang ; Guo, Sijin ; Li, Shanshan ; Chiu, Wah ; Guo, Peixuan ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-2996-1</identifier><identifier>PMID: 34484616</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic force microscopy ; Atomic/Molecular Structure and Spectra ; BASIC BIOLOGICAL SCIENCES ; Biodistribution ; Biomedicine ; Biomolecules ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Confocal microscopy ; Drug delivery ; Electron microscopy ; Electrophoresis ; Encapsulation ; Flow cytometry ; Gel electrophoresis ; hydrophobic biomolecule ; Hydrophobicity ; Materials Science ; Medical treatment ; Microscopy ; Nanotechnology ; Polyacrylamide ; Research Article ; Ribonucleic acid ; ribonucleic acid (RNA) nanocage ; RNA ; RNA nanotechnology ; Self-assembly ; Sheathing ; Shielding ; Spleen ; three-way junction (3WJ)</subject><ispartof>Nano research, 2020-12, Vol.13 (12), p.3241-3247</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</citedby><cites>FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-2996-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-2996-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34484616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1770145$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Congcong</creatorcontrib><creatorcontrib>Zhang, Kaiming</creatorcontrib><creatorcontrib>Yin, Hongran</creatorcontrib><creatorcontrib>Li, Zhefeng</creatorcontrib><creatorcontrib>Krasnoslobodtsev, Alexey</creatorcontrib><creatorcontrib>Zheng, Zhen</creatorcontrib><creatorcontrib>Ji, Zhouxiang</creatorcontrib><creatorcontrib>Guo, Sijin</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Chiu, Wah</creatorcontrib><creatorcontrib>Guo, Peixuan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Res</addtitle><description>Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.</description><subject>Atomic force microscopy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodistribution</subject><subject>Biomedicine</subject><subject>Biomolecules</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Confocal microscopy</subject><subject>Drug delivery</subject><subject>Electron microscopy</subject><subject>Electrophoresis</subject><subject>Encapsulation</subject><subject>Flow cytometry</subject><subject>Gel electrophoresis</subject><subject>hydrophobic biomolecule</subject><subject>Hydrophobicity</subject><subject>Materials Science</subject><subject>Medical treatment</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Polyacrylamide</subject><subject>Research Article</subject><subject>Ribonucleic acid</subject><subject>ribonucleic acid (RNA) nanocage</subject><subject>RNA</subject><subject>RNA nanotechnology</subject><subject>Self-assembly</subject><subject>Sheathing</subject><subject>Shielding</subject><subject>Spleen</subject><subject>three-way junction (3WJ)</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEUhgdRbK3-ADcSdD2ak8nkYyOUVluhKIiuQyYfd1LmJmOSudB_71ymrbowmwTOc55zwts0rwG_B4z5hwKEcNpiglsiJWvhSXMKUooWr-fpwxsIPWlelHKLMSNAxfPmpKNUUAbstMndJfr-9RxFHZPRO4d8yshFo-eyTLqGFJGOFpUxuMmGuEPJo_HO5jSPaQgGDSHt0-TMMrmCakJhP-d0cKiODoWIDuGQjowNpeYwLEfhy-aZ11Nxr-7vs-bn508_Lq7bm29XXy7Ob1pDJa8tc4ZY7b3XklsrvRBO9j0RjHYEDDccJHXeAzOWMW-7wVAOFnOBe2psT7qz5uPmnZdh76xxsWY9qTmHvc53Kumg_q3EMKpdOihBgUAnVsHbTZBKDaqYUJ0ZTYrRmaqAcwy0X6F391Ny-rW4UtVtWnJcP6YIw5T0mHV8pWCjTE6lZOcf1wCsjlmqLUu1ZqmOWSpYe978vf9jx0N4K0A2oKyluHP5z-j_W38D-KesJw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Xu, Congcong</creator><creator>Zhang, Kaiming</creator><creator>Yin, Hongran</creator><creator>Li, Zhefeng</creator><creator>Krasnoslobodtsev, Alexey</creator><creator>Zheng, Zhen</creator><creator>Ji, Zhouxiang</creator><creator>Guo, Sijin</creator><creator>Li, Shanshan</creator><creator>Chiu, Wah</creator><creator>Guo, Peixuan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</title><author>Xu, Congcong ; Zhang, Kaiming ; Yin, Hongran ; Li, Zhefeng ; Krasnoslobodtsev, Alexey ; Zheng, Zhen ; Ji, Zhouxiang ; Guo, Sijin ; Li, Shanshan ; Chiu, Wah ; Guo, Peixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic force microscopy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodistribution</topic><topic>Biomedicine</topic><topic>Biomolecules</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Confocal microscopy</topic><topic>Drug delivery</topic><topic>Electron microscopy</topic><topic>Electrophoresis</topic><topic>Encapsulation</topic><topic>Flow cytometry</topic><topic>Gel electrophoresis</topic><topic>hydrophobic biomolecule</topic><topic>Hydrophobicity</topic><topic>Materials Science</topic><topic>Medical treatment</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Polyacrylamide</topic><topic>Research Article</topic><topic>Ribonucleic acid</topic><topic>ribonucleic acid (RNA) nanocage</topic><topic>RNA</topic><topic>RNA nanotechnology</topic><topic>Self-assembly</topic><topic>Sheathing</topic><topic>Shielding</topic><topic>Spleen</topic><topic>three-way junction (3WJ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Congcong</creatorcontrib><creatorcontrib>Zhang, Kaiming</creatorcontrib><creatorcontrib>Yin, Hongran</creatorcontrib><creatorcontrib>Li, Zhefeng</creatorcontrib><creatorcontrib>Krasnoslobodtsev, Alexey</creatorcontrib><creatorcontrib>Zheng, Zhen</creatorcontrib><creatorcontrib>Ji, Zhouxiang</creatorcontrib><creatorcontrib>Guo, Sijin</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Chiu, Wah</creatorcontrib><creatorcontrib>Guo, Peixuan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Congcong</au><au>Zhang, Kaiming</au><au>Yin, Hongran</au><au>Li, Zhefeng</au><au>Krasnoslobodtsev, Alexey</au><au>Zheng, Zhen</au><au>Ji, Zhouxiang</au><au>Guo, Sijin</au><au>Li, Shanshan</au><au>Chiu, Wah</au><au>Guo, Peixuan</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Res</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>13</volume><issue>12</issue><spage>3241</spage><epage>3247</epage><pages>3241-3247</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions in vitro and in vivo based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules in vitro was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The in vivo sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for in vivo delivery of hydrophobic drugs for disease treatment.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><pmid>34484616</pmid><doi>10.1007/s12274-020-2996-1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2020-12, Vol.13 (12), p.3241-3247
issn 1998-0124
1998-0000
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8412138
source SpringerLink Journals (MCLS)
subjects Atomic force microscopy
Atomic/Molecular Structure and Spectra
BASIC BIOLOGICAL SCIENCES
Biodistribution
Biomedicine
Biomolecules
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Confocal microscopy
Drug delivery
Electron microscopy
Electrophoresis
Encapsulation
Flow cytometry
Gel electrophoresis
hydrophobic biomolecule
Hydrophobicity
Materials Science
Medical treatment
Microscopy
Nanotechnology
Polyacrylamide
Research Article
Ribonucleic acid
ribonucleic acid (RNA) nanocage
RNA
RNA nanotechnology
Self-assembly
Sheathing
Shielding
Spleen
three-way junction (3WJ)
title 3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20RNA%20nanocage%20for%20encapsulation%20and%20shielding%20of%20hydrophobic%20biomolecules%20to%20improve%20the%20in%20vivo%20biodistribution&rft.jtitle=Nano%20research&rft.au=Xu,%20Congcong&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-12-01&rft.volume=13&rft.issue=12&rft.spage=3241&rft.epage=3247&rft.pages=3241-3247&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-2996-1&rft_dat=%3Cproquest_pubme%3E2604250637%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604250637&rft_id=info:pmid/34484616&rfr_iscdi=true