3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution
Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for in vivo delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in...
Gespeichert in:
Veröffentlicht in: | Nano research 2020-12, Vol.13 (12), p.3241-3247 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3247 |
---|---|
container_issue | 12 |
container_start_page | 3241 |
container_title | Nano research |
container_volume | 13 |
creator | Xu, Congcong Zhang, Kaiming Yin, Hongran Li, Zhefeng Krasnoslobodtsev, Alexey Zheng, Zhen Ji, Zhouxiang Guo, Sijin Li, Shanshan Chiu, Wah Guo, Peixuan |
description | Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for
in vivo
delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions
in vitro
and
in vivo
based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules
in vitro
was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The
in vivo
sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for
in vivo
delivery of hydrophobic drugs for disease treatment. |
doi_str_mv | 10.1007/s12274-020-2996-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8412138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604250637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhgdRbK3-ADcSdD2ak8nkYyOUVluhKIiuQyYfd1LmJmOSudB_71ymrbowmwTOc55zwts0rwG_B4z5hwKEcNpiglsiJWvhSXMKUooWr-fpwxsIPWlelHKLMSNAxfPmpKNUUAbstMndJfr-9RxFHZPRO4d8yshFo-eyTLqGFJGOFpUxuMmGuEPJo_HO5jSPaQgGDSHt0-TMMrmCakJhP-d0cKiODoWIDuGQjowNpeYwLEfhy-aZ11Nxr-7vs-bn508_Lq7bm29XXy7Ob1pDJa8tc4ZY7b3XklsrvRBO9j0RjHYEDDccJHXeAzOWMW-7wVAOFnOBe2psT7qz5uPmnZdh76xxsWY9qTmHvc53Kumg_q3EMKpdOihBgUAnVsHbTZBKDaqYUJ0ZTYrRmaqAcwy0X6F391Ny-rW4UtVtWnJcP6YIw5T0mHV8pWCjTE6lZOcf1wCsjlmqLUu1ZqmOWSpYe978vf9jx0N4K0A2oKyluHP5z-j_W38D-KesJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604250637</pqid></control><display><type>article</type><title>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</title><source>SpringerLink Journals (MCLS)</source><creator>Xu, Congcong ; Zhang, Kaiming ; Yin, Hongran ; Li, Zhefeng ; Krasnoslobodtsev, Alexey ; Zheng, Zhen ; Ji, Zhouxiang ; Guo, Sijin ; Li, Shanshan ; Chiu, Wah ; Guo, Peixuan</creator><creatorcontrib>Xu, Congcong ; Zhang, Kaiming ; Yin, Hongran ; Li, Zhefeng ; Krasnoslobodtsev, Alexey ; Zheng, Zhen ; Ji, Zhouxiang ; Guo, Sijin ; Li, Shanshan ; Chiu, Wah ; Guo, Peixuan ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for
in vivo
delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions
in vitro
and
in vivo
based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules
in vitro
was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The
in vivo
sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for
in vivo
delivery of hydrophobic drugs for disease treatment.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-020-2996-1</identifier><identifier>PMID: 34484616</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic force microscopy ; Atomic/Molecular Structure and Spectra ; BASIC BIOLOGICAL SCIENCES ; Biodistribution ; Biomedicine ; Biomolecules ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Confocal microscopy ; Drug delivery ; Electron microscopy ; Electrophoresis ; Encapsulation ; Flow cytometry ; Gel electrophoresis ; hydrophobic biomolecule ; Hydrophobicity ; Materials Science ; Medical treatment ; Microscopy ; Nanotechnology ; Polyacrylamide ; Research Article ; Ribonucleic acid ; ribonucleic acid (RNA) nanocage ; RNA ; RNA nanotechnology ; Self-assembly ; Sheathing ; Shielding ; Spleen ; three-way junction (3WJ)</subject><ispartof>Nano research, 2020-12, Vol.13 (12), p.3241-3247</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</citedby><cites>FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-020-2996-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-020-2996-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34484616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1770145$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Congcong</creatorcontrib><creatorcontrib>Zhang, Kaiming</creatorcontrib><creatorcontrib>Yin, Hongran</creatorcontrib><creatorcontrib>Li, Zhefeng</creatorcontrib><creatorcontrib>Krasnoslobodtsev, Alexey</creatorcontrib><creatorcontrib>Zheng, Zhen</creatorcontrib><creatorcontrib>Ji, Zhouxiang</creatorcontrib><creatorcontrib>Guo, Sijin</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Chiu, Wah</creatorcontrib><creatorcontrib>Guo, Peixuan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Res</addtitle><description>Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for
in vivo
delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions
in vitro
and
in vivo
based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules
in vitro
was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The
in vivo
sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for
in vivo
delivery of hydrophobic drugs for disease treatment.</description><subject>Atomic force microscopy</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodistribution</subject><subject>Biomedicine</subject><subject>Biomolecules</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Confocal microscopy</subject><subject>Drug delivery</subject><subject>Electron microscopy</subject><subject>Electrophoresis</subject><subject>Encapsulation</subject><subject>Flow cytometry</subject><subject>Gel electrophoresis</subject><subject>hydrophobic biomolecule</subject><subject>Hydrophobicity</subject><subject>Materials Science</subject><subject>Medical treatment</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Polyacrylamide</subject><subject>Research Article</subject><subject>Ribonucleic acid</subject><subject>ribonucleic acid (RNA) nanocage</subject><subject>RNA</subject><subject>RNA nanotechnology</subject><subject>Self-assembly</subject><subject>Sheathing</subject><subject>Shielding</subject><subject>Spleen</subject><subject>three-way junction (3WJ)</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1rFTEUhgdRbK3-ADcSdD2ak8nkYyOUVluhKIiuQyYfd1LmJmOSudB_71ymrbowmwTOc55zwts0rwG_B4z5hwKEcNpiglsiJWvhSXMKUooWr-fpwxsIPWlelHKLMSNAxfPmpKNUUAbstMndJfr-9RxFHZPRO4d8yshFo-eyTLqGFJGOFpUxuMmGuEPJo_HO5jSPaQgGDSHt0-TMMrmCakJhP-d0cKiODoWIDuGQjowNpeYwLEfhy-aZ11Nxr-7vs-bn508_Lq7bm29XXy7Ob1pDJa8tc4ZY7b3XklsrvRBO9j0RjHYEDDccJHXeAzOWMW-7wVAOFnOBe2psT7qz5uPmnZdh76xxsWY9qTmHvc53Kumg_q3EMKpdOihBgUAnVsHbTZBKDaqYUJ0ZTYrRmaqAcwy0X6F391Ny-rW4UtVtWnJcP6YIw5T0mHV8pWCjTE6lZOcf1wCsjlmqLUu1ZqmOWSpYe978vf9jx0N4K0A2oKyluHP5z-j_W38D-KesJw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Xu, Congcong</creator><creator>Zhang, Kaiming</creator><creator>Yin, Hongran</creator><creator>Li, Zhefeng</creator><creator>Krasnoslobodtsev, Alexey</creator><creator>Zheng, Zhen</creator><creator>Ji, Zhouxiang</creator><creator>Guo, Sijin</creator><creator>Li, Shanshan</creator><creator>Chiu, Wah</creator><creator>Guo, Peixuan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><general>Springer</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</title><author>Xu, Congcong ; Zhang, Kaiming ; Yin, Hongran ; Li, Zhefeng ; Krasnoslobodtsev, Alexey ; Zheng, Zhen ; Ji, Zhouxiang ; Guo, Sijin ; Li, Shanshan ; Chiu, Wah ; Guo, Peixuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-6ec2dafffa97dd9f88e9552864321c7c7194eff16cd66fd3bc471d078054cd523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic force microscopy</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodistribution</topic><topic>Biomedicine</topic><topic>Biomolecules</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Confocal microscopy</topic><topic>Drug delivery</topic><topic>Electron microscopy</topic><topic>Electrophoresis</topic><topic>Encapsulation</topic><topic>Flow cytometry</topic><topic>Gel electrophoresis</topic><topic>hydrophobic biomolecule</topic><topic>Hydrophobicity</topic><topic>Materials Science</topic><topic>Medical treatment</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Polyacrylamide</topic><topic>Research Article</topic><topic>Ribonucleic acid</topic><topic>ribonucleic acid (RNA) nanocage</topic><topic>RNA</topic><topic>RNA nanotechnology</topic><topic>Self-assembly</topic><topic>Sheathing</topic><topic>Shielding</topic><topic>Spleen</topic><topic>three-way junction (3WJ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Congcong</creatorcontrib><creatorcontrib>Zhang, Kaiming</creatorcontrib><creatorcontrib>Yin, Hongran</creatorcontrib><creatorcontrib>Li, Zhefeng</creatorcontrib><creatorcontrib>Krasnoslobodtsev, Alexey</creatorcontrib><creatorcontrib>Zheng, Zhen</creatorcontrib><creatorcontrib>Ji, Zhouxiang</creatorcontrib><creatorcontrib>Guo, Sijin</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Chiu, Wah</creatorcontrib><creatorcontrib>Guo, Peixuan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Congcong</au><au>Zhang, Kaiming</au><au>Yin, Hongran</au><au>Li, Zhefeng</au><au>Krasnoslobodtsev, Alexey</au><au>Zheng, Zhen</au><au>Ji, Zhouxiang</au><au>Guo, Sijin</au><au>Li, Shanshan</au><au>Chiu, Wah</au><au>Guo, Peixuan</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Res</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>13</volume><issue>12</issue><spage>3241</spage><epage>3247</epage><pages>3241-3247</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Ribonucleic acid (RNA) nanotechnology platforms have the potential of harboring therapeutics for
in vivo
delivery in disease treatment. However, the nonspecific interaction between the harbored hydrophobic drugs and cells or other components before reaching the diseased site has been an obstacle in drug delivery. Here we report an encapsulation strategy to prevent such nonspecific hydrophobic interactions
in vitro
and
in vivo
based on a self-assembled three-dimensional (3D) RNA nanocage. By placing an RNA three-way junction (3WJ) in the cavity of the nanocage, the conjugated hydrophobic molecules were specifically positioned within the nanocage, preventing their exposure to the biological environment. The assembly of the nanocages was characterized by native polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), and cryogenic electron microscopy (cryo-EM) imaging. The stealth effect of the nanocage for hydrophobic molecules
in vitro
was evaluated by gel electrophoresis, flow cytometry, and confocal microscopy. The
in vivo
sheathing effect of the nanocage for hydrophobic molecules was assessed by biodistribution profiling in mice. The RNA nanocages with hydrophobic biomolecules underwent faster clearance in liver and spleen in comparison to their counterparts. Therefore, this encapsulation strategy holds promise for
in vivo
delivery of hydrophobic drugs for disease treatment.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><pmid>34484616</pmid><doi>10.1007/s12274-020-2996-1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2020-12, Vol.13 (12), p.3241-3247 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8412138 |
source | SpringerLink Journals (MCLS) |
subjects | Atomic force microscopy Atomic/Molecular Structure and Spectra BASIC BIOLOGICAL SCIENCES Biodistribution Biomedicine Biomolecules Biotechnology Chemistry and Materials Science Condensed Matter Physics Confocal microscopy Drug delivery Electron microscopy Electrophoresis Encapsulation Flow cytometry Gel electrophoresis hydrophobic biomolecule Hydrophobicity Materials Science Medical treatment Microscopy Nanotechnology Polyacrylamide Research Article Ribonucleic acid ribonucleic acid (RNA) nanocage RNA RNA nanotechnology Self-assembly Sheathing Shielding Spleen three-way junction (3WJ) |
title | 3D RNA nanocage for encapsulation and shielding of hydrophobic biomolecules to improve the in vivo biodistribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20RNA%20nanocage%20for%20encapsulation%20and%20shielding%20of%20hydrophobic%20biomolecules%20to%20improve%20the%20in%20vivo%20biodistribution&rft.jtitle=Nano%20research&rft.au=Xu,%20Congcong&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-12-01&rft.volume=13&rft.issue=12&rft.spage=3241&rft.epage=3247&rft.pages=3241-3247&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-020-2996-1&rft_dat=%3Cproquest_pubme%3E2604250637%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604250637&rft_id=info:pmid/34484616&rfr_iscdi=true |