Adaptive staffing can mitigate essential worker disease and absenteeism in an emerging epidemic
Essential worker absenteeism has been a pressing problem in the COVID-19 pandemic. Nearly 20% of US hospitals experienced staff shortages, exhausting replacement pools and at times requiring COVID-positive healthcare workers to remain at work. To our knowledge there are no data-informed models exami...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (34), p.1-3 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3 |
---|---|
container_issue | 34 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Aguilar, Elliot Roberts, Nicholas J. Uluturk, Ismail Kaminski, Patrick Barlow, John W. Zori, Andreas G. Hébert-Dufresne, Laurent Zusman, Benjamin D. |
description | Essential worker absenteeism has been a pressing problem in the COVID-19 pandemic. Nearly 20% of US hospitals experienced staff shortages, exhausting replacement pools and at times requiring COVID-positive healthcare workers to remain at work. To our knowledge there are no data-informed models examining how different staffing strategies affect epidemic dynamics on a network in the context of rising worker absenteeism. Here we develop a susceptible–infected–quarantined-recovered adaptive network model using pair approximations to gauge the effects of worker replacement versus redistribution of work among remaining healthy workers in the early epidemic phase. Parameterized with hospital data, the model exhibits a time-varying trade-off: Worker replacement minimizes peak prevalence in the early phase, while redistribution minimizes final outbreak size. Any “ideal” strategy requires balancing the need to maintain a baseline number of workers against the desire to decrease total number infected. We show that one adaptive strategy—switching from replacement to redistribution at epidemic peak—decreases disease burden by 9.7% and nearly doubles the final fraction of healthy workers compared to pure replacement. |
doi_str_mv | 10.1073/pnas.2105337118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8403949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27075481</jstor_id><sourcerecordid>27075481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4b430814ce29695af8b53e1366cae25c87cb2a1f25d1c3d1a43492dea06b19b03</originalsourceid><addsrcrecordid>eNpdkc1rFEEQxRtRzCZ69iQ0ePEySfXndF-EENQIAS96bmp6atZe58vu2QT_e2fYENFTQdXvPV7xGHsj4FJAra7mEculFGCUqoVwz9hOgBeV1R6esx2ArCunpT5j56UcAMAbBy_ZmdIawIDcsXDd4ryke-Jlwa5L455HHPmQlrTHhTiVQuOSsOcPU_5JmbepEBbiOLYcm-1IlMrA07iuOA2U95sJzamlIcVX7EWHfaHXj_OCff_08dvNbXX39fOXm-u7KmoJS6UbrcAJHUl66w12rjGKhLI2IkkTXR0biaKTphVRtQK10l62hGAb4RtQF-zDyXc-NgO1cc2VsQ9zTgPm32HCFP69jOlH2E_3wWlQXvvV4P2jQZ5-HaksYUglUt_jSNOxBGmslMo5W6_ou__Qw3TM4_reRhnrrBZmpa5OVMxTKZm6pzACwlZe2MoLf8tbFW9PikNZpvyEyxpqo51QfwDig5bJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565686415</pqid></control><display><type>article</type><title>Adaptive staffing can mitigate essential worker disease and absenteeism in an emerging epidemic</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Aguilar, Elliot ; Roberts, Nicholas J. ; Uluturk, Ismail ; Kaminski, Patrick ; Barlow, John W. ; Zori, Andreas G. ; Hébert-Dufresne, Laurent ; Zusman, Benjamin D.</creator><creatorcontrib>Aguilar, Elliot ; Roberts, Nicholas J. ; Uluturk, Ismail ; Kaminski, Patrick ; Barlow, John W. ; Zori, Andreas G. ; Hébert-Dufresne, Laurent ; Zusman, Benjamin D.</creatorcontrib><description>Essential worker absenteeism has been a pressing problem in the COVID-19 pandemic. Nearly 20% of US hospitals experienced staff shortages, exhausting replacement pools and at times requiring COVID-positive healthcare workers to remain at work. To our knowledge there are no data-informed models examining how different staffing strategies affect epidemic dynamics on a network in the context of rising worker absenteeism. Here we develop a susceptible–infected–quarantined-recovered adaptive network model using pair approximations to gauge the effects of worker replacement versus redistribution of work among remaining healthy workers in the early epidemic phase. Parameterized with hospital data, the model exhibits a time-varying trade-off: Worker replacement minimizes peak prevalence in the early phase, while redistribution minimizes final outbreak size. Any “ideal” strategy requires balancing the need to maintain a baseline number of workers against the desire to decrease total number infected. We show that one adaptive strategy—switching from replacement to redistribution at epidemic peak—decreases disease burden by 9.7% and nearly doubles the final fraction of healthy workers compared to pure replacement.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2105337118</identifier><identifier>PMID: 34400502</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Absenteeism ; Biological Sciences ; BRIEF REPORTS ; COVID-19 ; Disease control ; Epidemics ; Essential workers ; Medical personnel ; Pandemics ; Physical Sciences ; Workers ; Workforce planning</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (34), p.1-3</ispartof><rights>Copyright National Academy of Sciences Aug 24, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-4b430814ce29695af8b53e1366cae25c87cb2a1f25d1c3d1a43492dea06b19b03</citedby><cites>FETCH-LOGICAL-c420t-4b430814ce29695af8b53e1366cae25c87cb2a1f25d1c3d1a43492dea06b19b03</cites><orcidid>0000-0002-2009-9170 ; 0000-0002-4262-2401 ; 0000-0001-5397-6486 ; 0000-0002-0008-3673 ; 0000-0002-8388-4846 ; 0000-0002-7815-9383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27075481$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27075481$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Aguilar, Elliot</creatorcontrib><creatorcontrib>Roberts, Nicholas J.</creatorcontrib><creatorcontrib>Uluturk, Ismail</creatorcontrib><creatorcontrib>Kaminski, Patrick</creatorcontrib><creatorcontrib>Barlow, John W.</creatorcontrib><creatorcontrib>Zori, Andreas G.</creatorcontrib><creatorcontrib>Hébert-Dufresne, Laurent</creatorcontrib><creatorcontrib>Zusman, Benjamin D.</creatorcontrib><title>Adaptive staffing can mitigate essential worker disease and absenteeism in an emerging epidemic</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Essential worker absenteeism has been a pressing problem in the COVID-19 pandemic. Nearly 20% of US hospitals experienced staff shortages, exhausting replacement pools and at times requiring COVID-positive healthcare workers to remain at work. To our knowledge there are no data-informed models examining how different staffing strategies affect epidemic dynamics on a network in the context of rising worker absenteeism. Here we develop a susceptible–infected–quarantined-recovered adaptive network model using pair approximations to gauge the effects of worker replacement versus redistribution of work among remaining healthy workers in the early epidemic phase. Parameterized with hospital data, the model exhibits a time-varying trade-off: Worker replacement minimizes peak prevalence in the early phase, while redistribution minimizes final outbreak size. Any “ideal” strategy requires balancing the need to maintain a baseline number of workers against the desire to decrease total number infected. We show that one adaptive strategy—switching from replacement to redistribution at epidemic peak—decreases disease burden by 9.7% and nearly doubles the final fraction of healthy workers compared to pure replacement.</description><subject>Absenteeism</subject><subject>Biological Sciences</subject><subject>BRIEF REPORTS</subject><subject>COVID-19</subject><subject>Disease control</subject><subject>Epidemics</subject><subject>Essential workers</subject><subject>Medical personnel</subject><subject>Pandemics</subject><subject>Physical Sciences</subject><subject>Workers</subject><subject>Workforce planning</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rFEEQxRtRzCZ69iQ0ePEySfXndF-EENQIAS96bmp6atZe58vu2QT_e2fYENFTQdXvPV7xGHsj4FJAra7mEculFGCUqoVwz9hOgBeV1R6esx2ArCunpT5j56UcAMAbBy_ZmdIawIDcsXDd4ryke-Jlwa5L455HHPmQlrTHhTiVQuOSsOcPU_5JmbepEBbiOLYcm-1IlMrA07iuOA2U95sJzamlIcVX7EWHfaHXj_OCff_08dvNbXX39fOXm-u7KmoJS6UbrcAJHUl66w12rjGKhLI2IkkTXR0biaKTphVRtQK10l62hGAb4RtQF-zDyXc-NgO1cc2VsQ9zTgPm32HCFP69jOlH2E_3wWlQXvvV4P2jQZ5-HaksYUglUt_jSNOxBGmslMo5W6_ou__Qw3TM4_reRhnrrBZmpa5OVMxTKZm6pzACwlZe2MoLf8tbFW9PikNZpvyEyxpqo51QfwDig5bJ</recordid><startdate>20210824</startdate><enddate>20210824</enddate><creator>Aguilar, Elliot</creator><creator>Roberts, Nicholas J.</creator><creator>Uluturk, Ismail</creator><creator>Kaminski, Patrick</creator><creator>Barlow, John W.</creator><creator>Zori, Andreas G.</creator><creator>Hébert-Dufresne, Laurent</creator><creator>Zusman, Benjamin D.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2009-9170</orcidid><orcidid>https://orcid.org/0000-0002-4262-2401</orcidid><orcidid>https://orcid.org/0000-0001-5397-6486</orcidid><orcidid>https://orcid.org/0000-0002-0008-3673</orcidid><orcidid>https://orcid.org/0000-0002-8388-4846</orcidid><orcidid>https://orcid.org/0000-0002-7815-9383</orcidid></search><sort><creationdate>20210824</creationdate><title>Adaptive staffing can mitigate essential worker disease and absenteeism in an emerging epidemic</title><author>Aguilar, Elliot ; Roberts, Nicholas J. ; Uluturk, Ismail ; Kaminski, Patrick ; Barlow, John W. ; Zori, Andreas G. ; Hébert-Dufresne, Laurent ; Zusman, Benjamin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4b430814ce29695af8b53e1366cae25c87cb2a1f25d1c3d1a43492dea06b19b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absenteeism</topic><topic>Biological Sciences</topic><topic>BRIEF REPORTS</topic><topic>COVID-19</topic><topic>Disease control</topic><topic>Epidemics</topic><topic>Essential workers</topic><topic>Medical personnel</topic><topic>Pandemics</topic><topic>Physical Sciences</topic><topic>Workers</topic><topic>Workforce planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar, Elliot</creatorcontrib><creatorcontrib>Roberts, Nicholas J.</creatorcontrib><creatorcontrib>Uluturk, Ismail</creatorcontrib><creatorcontrib>Kaminski, Patrick</creatorcontrib><creatorcontrib>Barlow, John W.</creatorcontrib><creatorcontrib>Zori, Andreas G.</creatorcontrib><creatorcontrib>Hébert-Dufresne, Laurent</creatorcontrib><creatorcontrib>Zusman, Benjamin D.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar, Elliot</au><au>Roberts, Nicholas J.</au><au>Uluturk, Ismail</au><au>Kaminski, Patrick</au><au>Barlow, John W.</au><au>Zori, Andreas G.</au><au>Hébert-Dufresne, Laurent</au><au>Zusman, Benjamin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive staffing can mitigate essential worker disease and absenteeism in an emerging epidemic</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2021-08-24</date><risdate>2021</risdate><volume>118</volume><issue>34</issue><spage>1</spage><epage>3</epage><pages>1-3</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Essential worker absenteeism has been a pressing problem in the COVID-19 pandemic. Nearly 20% of US hospitals experienced staff shortages, exhausting replacement pools and at times requiring COVID-positive healthcare workers to remain at work. To our knowledge there are no data-informed models examining how different staffing strategies affect epidemic dynamics on a network in the context of rising worker absenteeism. Here we develop a susceptible–infected–quarantined-recovered adaptive network model using pair approximations to gauge the effects of worker replacement versus redistribution of work among remaining healthy workers in the early epidemic phase. Parameterized with hospital data, the model exhibits a time-varying trade-off: Worker replacement minimizes peak prevalence in the early phase, while redistribution minimizes final outbreak size. Any “ideal” strategy requires balancing the need to maintain a baseline number of workers against the desire to decrease total number infected. We show that one adaptive strategy—switching from replacement to redistribution at epidemic peak—decreases disease burden by 9.7% and nearly doubles the final fraction of healthy workers compared to pure replacement.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>34400502</pmid><doi>10.1073/pnas.2105337118</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0002-2009-9170</orcidid><orcidid>https://orcid.org/0000-0002-4262-2401</orcidid><orcidid>https://orcid.org/0000-0001-5397-6486</orcidid><orcidid>https://orcid.org/0000-0002-0008-3673</orcidid><orcidid>https://orcid.org/0000-0002-8388-4846</orcidid><orcidid>https://orcid.org/0000-0002-7815-9383</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-08, Vol.118 (34), p.1-3 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8403949 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Absenteeism Biological Sciences BRIEF REPORTS COVID-19 Disease control Epidemics Essential workers Medical personnel Pandemics Physical Sciences Workers Workforce planning |
title | Adaptive staffing can mitigate essential worker disease and absenteeism in an emerging epidemic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20staffing%20can%20mitigate%20essential%20worker%20disease%20and%20absenteeism%20in%20an%20emerging%20epidemic&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Aguilar,%20Elliot&rft.date=2021-08-24&rft.volume=118&rft.issue=34&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2105337118&rft_dat=%3Cjstor_pubme%3E27075481%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565686415&rft_id=info:pmid/34400502&rft_jstor_id=27075481&rfr_iscdi=true |