Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome

Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2021-11, Vol.162 (11), p.1
Hauptverfasser: Moore, Aleisha M, Lohr, Dayanara B, Coolen, Lique M, Lehman, Michael N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title Endocrinology (Philadelphia)
container_volume 162
creator Moore, Aleisha M
Lohr, Dayanara B
Coolen, Lique M
Lehman, Michael N
description Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.
doi_str_mv 10.1210/endocr/bqab158
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775899282</galeid><oup_id>10.1210/endocr/bqab158</oup_id><sourcerecordid>A775899282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EokvhyhFZ4gKHtLYTJ_EFKSotIEpbiXK2HHu8dcnaWzsp5N_Xq13KhyohHyzPPPPOjPUi9JKSA8ooOQRvgo6H_Y3qKW8foQUVFS8a2pDHaEEILYuGsWYPPUvpOj-rqiqfor2yKqu6EmyB0kUEr0Y14M6bGJbg8fHPdUhTBNwNI8SEP5-9n_EZTDH4hJU3-PIKXMSdtZBrx5waf4T4HTuPFf4SDAw4WHwRhlnPaXQan9-q6JTHX-dNixU8R0-sGhK82N376NvJ8eXRx-L0_MOno-600JyKsTAVo6bnjBkBtuFMldwCr4kumRB1z1qqRdVADpqGm0zbGmxpVN8D11zV5T56t9VdT_0KjM7DRjXIdXQrFWcZlJN_Z7y7kstwK9uKMFGyLPBmJxDDzQRplCuXNAyD8hCmJBnnLWkFr5uMvv4HvQ5T9Hk9yVpBa95S0v6mlmoA6bwNua_eiMquaXgrBGs3bQ8eoPIxsHI6eLAuxx8q0DGkFMHe70iJ3NhEbm0idzbJBa_-_Jl7_JcvMvB2C4Rp_T-xO5PLybQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891658108</pqid></control><display><type>article</type><title>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Moore, Aleisha M ; Lohr, Dayanara B ; Coolen, Lique M ; Lehman, Michael N</creator><creatorcontrib>Moore, Aleisha M ; Lohr, Dayanara B ; Coolen, Lique M ; Lehman, Michael N</creatorcontrib><description>Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.</description><identifier>ISSN: 0013-7227</identifier><identifier>ISSN: 1945-7170</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/endocr/bqab158</identifier><identifier>PMID: 34346492</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Afferent Pathways - drug effects ; Afferent Pathways - metabolism ; Androgen receptors ; Androgens ; Androgens - blood ; Androgens - pharmacology ; Animals ; Brain ; Disease Models, Animal ; Dynorphin ; Dynorphins - metabolism ; Endocrine disorders ; Endocrinology ; Feedback ; Female ; GABA ; Gene expression ; Genes ; Glutamatergic transmission ; Glycoproteins ; Gonadotropin-releasing hormone ; Hypothalamus ; Hypothalamus (lateral) ; Kiss1 protein ; Kisspeptins - metabolism ; Luteinizing hormone ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Negative feedback ; Neurokinin ; Neurokinin B ; Neurokinin B - metabolism ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Neurons - pathology ; Neurons - physiology ; Neurons, Afferent - drug effects ; Neurons, Afferent - metabolism ; Neurosecretory Systems - drug effects ; Neurosecretory Systems - metabolism ; Ovaries ; Pathogenesis ; Periventricular nucleus ; Phenotypes ; Pituitary (anterior) ; Pituitary hormones ; Polycystic ovary syndrome ; Polycystic Ovary Syndrome - metabolism ; Polycystic Ovary Syndrome - pathology ; Polycystic Ovary Syndrome - physiopathology ; Polycystic Ovary Syndrome - psychology ; Pregnancy ; Pregnant women ; Prenatal experience ; Prenatal Exposure Delayed Effects - metabolism ; Prenatal Exposure Delayed Effects - pathology ; Prenatal Exposure Delayed Effects - psychology ; Preoptic area ; Progesterone ; Pulse generators ; Receptors ; Sensory neurons ; Sexual dimorphism ; Stein-Leventhal syndrome ; Steroids ; γ-Aminobutyric acid</subject><ispartof>Endocrinology (Philadelphia), 2021-11, Vol.162 (11), p.1</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</citedby><cites>FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</cites><orcidid>0000-0002-8675-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34346492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Aleisha M</creatorcontrib><creatorcontrib>Lohr, Dayanara B</creatorcontrib><creatorcontrib>Coolen, Lique M</creatorcontrib><creatorcontrib>Lehman, Michael N</creatorcontrib><title>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.</description><subject>Afferent Pathways - drug effects</subject><subject>Afferent Pathways - metabolism</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Androgens - blood</subject><subject>Androgens - pharmacology</subject><subject>Animals</subject><subject>Brain</subject><subject>Disease Models, Animal</subject><subject>Dynorphin</subject><subject>Dynorphins - metabolism</subject><subject>Endocrine disorders</subject><subject>Endocrinology</subject><subject>Feedback</subject><subject>Female</subject><subject>GABA</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glutamatergic transmission</subject><subject>Glycoproteins</subject><subject>Gonadotropin-releasing hormone</subject><subject>Hypothalamus</subject><subject>Hypothalamus (lateral)</subject><subject>Kiss1 protein</subject><subject>Kisspeptins - metabolism</subject><subject>Luteinizing hormone</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Negative feedback</subject><subject>Neurokinin</subject><subject>Neurokinin B</subject><subject>Neurokinin B - metabolism</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurons - physiology</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurons, Afferent - metabolism</subject><subject>Neurosecretory Systems - drug effects</subject><subject>Neurosecretory Systems - metabolism</subject><subject>Ovaries</subject><subject>Pathogenesis</subject><subject>Periventricular nucleus</subject><subject>Phenotypes</subject><subject>Pituitary (anterior)</subject><subject>Pituitary hormones</subject><subject>Polycystic ovary syndrome</subject><subject>Polycystic Ovary Syndrome - metabolism</subject><subject>Polycystic Ovary Syndrome - pathology</subject><subject>Polycystic Ovary Syndrome - physiopathology</subject><subject>Polycystic Ovary Syndrome - psychology</subject><subject>Pregnancy</subject><subject>Pregnant women</subject><subject>Prenatal experience</subject><subject>Prenatal Exposure Delayed Effects - metabolism</subject><subject>Prenatal Exposure Delayed Effects - pathology</subject><subject>Prenatal Exposure Delayed Effects - psychology</subject><subject>Preoptic area</subject><subject>Progesterone</subject><subject>Pulse generators</subject><subject>Receptors</subject><subject>Sensory neurons</subject><subject>Sexual dimorphism</subject><subject>Stein-Leventhal syndrome</subject><subject>Steroids</subject><subject>γ-Aminobutyric acid</subject><issn>0013-7227</issn><issn>1945-7170</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EokvhyhFZ4gKHtLYTJ_EFKSotIEpbiXK2HHu8dcnaWzsp5N_Xq13KhyohHyzPPPPOjPUi9JKSA8ooOQRvgo6H_Y3qKW8foQUVFS8a2pDHaEEILYuGsWYPPUvpOj-rqiqfor2yKqu6EmyB0kUEr0Y14M6bGJbg8fHPdUhTBNwNI8SEP5-9n_EZTDH4hJU3-PIKXMSdtZBrx5waf4T4HTuPFf4SDAw4WHwRhlnPaXQan9-q6JTHX-dNixU8R0-sGhK82N376NvJ8eXRx-L0_MOno-600JyKsTAVo6bnjBkBtuFMldwCr4kumRB1z1qqRdVADpqGm0zbGmxpVN8D11zV5T56t9VdT_0KjM7DRjXIdXQrFWcZlJN_Z7y7kstwK9uKMFGyLPBmJxDDzQRplCuXNAyD8hCmJBnnLWkFr5uMvv4HvQ5T9Hk9yVpBa95S0v6mlmoA6bwNua_eiMquaXgrBGs3bQ8eoPIxsHI6eLAuxx8q0DGkFMHe70iJ3NhEbm0idzbJBa_-_Jl7_JcvMvB2C4Rp_T-xO5PLybQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Moore, Aleisha M</creator><creator>Lohr, Dayanara B</creator><creator>Coolen, Lique M</creator><creator>Lehman, Michael N</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8675-8271</orcidid></search><sort><creationdate>20211101</creationdate><title>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</title><author>Moore, Aleisha M ; Lohr, Dayanara B ; Coolen, Lique M ; Lehman, Michael N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Afferent Pathways - drug effects</topic><topic>Afferent Pathways - metabolism</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Androgens - blood</topic><topic>Androgens - pharmacology</topic><topic>Animals</topic><topic>Brain</topic><topic>Disease Models, Animal</topic><topic>Dynorphin</topic><topic>Dynorphins - metabolism</topic><topic>Endocrine disorders</topic><topic>Endocrinology</topic><topic>Feedback</topic><topic>Female</topic><topic>GABA</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glutamatergic transmission</topic><topic>Glycoproteins</topic><topic>Gonadotropin-releasing hormone</topic><topic>Hypothalamus</topic><topic>Hypothalamus (lateral)</topic><topic>Kiss1 protein</topic><topic>Kisspeptins - metabolism</topic><topic>Luteinizing hormone</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Negative feedback</topic><topic>Neurokinin</topic><topic>Neurokinin B</topic><topic>Neurokinin B - metabolism</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurons - physiology</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurons, Afferent - metabolism</topic><topic>Neurosecretory Systems - drug effects</topic><topic>Neurosecretory Systems - metabolism</topic><topic>Ovaries</topic><topic>Pathogenesis</topic><topic>Periventricular nucleus</topic><topic>Phenotypes</topic><topic>Pituitary (anterior)</topic><topic>Pituitary hormones</topic><topic>Polycystic ovary syndrome</topic><topic>Polycystic Ovary Syndrome - metabolism</topic><topic>Polycystic Ovary Syndrome - pathology</topic><topic>Polycystic Ovary Syndrome - physiopathology</topic><topic>Polycystic Ovary Syndrome - psychology</topic><topic>Pregnancy</topic><topic>Pregnant women</topic><topic>Prenatal experience</topic><topic>Prenatal Exposure Delayed Effects - metabolism</topic><topic>Prenatal Exposure Delayed Effects - pathology</topic><topic>Prenatal Exposure Delayed Effects - psychology</topic><topic>Preoptic area</topic><topic>Progesterone</topic><topic>Pulse generators</topic><topic>Receptors</topic><topic>Sensory neurons</topic><topic>Sexual dimorphism</topic><topic>Stein-Leventhal syndrome</topic><topic>Steroids</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Aleisha M</creatorcontrib><creatorcontrib>Lohr, Dayanara B</creatorcontrib><creatorcontrib>Coolen, Lique M</creatorcontrib><creatorcontrib>Lehman, Michael N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Aleisha M</au><au>Lohr, Dayanara B</au><au>Coolen, Lique M</au><au>Lehman, Michael N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>162</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>0013-7227</issn><issn>1945-7170</issn><eissn>1945-7170</eissn><abstract>Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>34346492</pmid><doi>10.1210/endocr/bqab158</doi><orcidid>https://orcid.org/0000-0002-8675-8271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2021-11, Vol.162 (11), p.1
issn 0013-7227
1945-7170
1945-7170
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402932
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Afferent Pathways - drug effects
Afferent Pathways - metabolism
Androgen receptors
Androgens
Androgens - blood
Androgens - pharmacology
Animals
Brain
Disease Models, Animal
Dynorphin
Dynorphins - metabolism
Endocrine disorders
Endocrinology
Feedback
Female
GABA
Gene expression
Genes
Glutamatergic transmission
Glycoproteins
Gonadotropin-releasing hormone
Hypothalamus
Hypothalamus (lateral)
Kiss1 protein
Kisspeptins - metabolism
Luteinizing hormone
Mice
Mice, Inbred C57BL
Mice, Transgenic
Negative feedback
Neurokinin
Neurokinin B
Neurokinin B - metabolism
Neurons
Neurons - drug effects
Neurons - metabolism
Neurons - pathology
Neurons - physiology
Neurons, Afferent - drug effects
Neurons, Afferent - metabolism
Neurosecretory Systems - drug effects
Neurosecretory Systems - metabolism
Ovaries
Pathogenesis
Periventricular nucleus
Phenotypes
Pituitary (anterior)
Pituitary hormones
Polycystic ovary syndrome
Polycystic Ovary Syndrome - metabolism
Polycystic Ovary Syndrome - pathology
Polycystic Ovary Syndrome - physiopathology
Polycystic Ovary Syndrome - psychology
Pregnancy
Pregnant women
Prenatal experience
Prenatal Exposure Delayed Effects - metabolism
Prenatal Exposure Delayed Effects - pathology
Prenatal Exposure Delayed Effects - psychology
Preoptic area
Progesterone
Pulse generators
Receptors
Sensory neurons
Sexual dimorphism
Stein-Leventhal syndrome
Steroids
γ-Aminobutyric acid
title Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prenatal%20Androgen%20Exposure%20Alters%20KNDy%20Neurons%20and%20Their%20Afferent%20Network%20in%20a%20Model%20of%20Polycystic%20Ovarian%20Syndrome&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Moore,%20Aleisha%20M&rft.date=2021-11-01&rft.volume=162&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/endocr/bqab158&rft_dat=%3Cgale_pubme%3EA775899282%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891658108&rft_id=info:pmid/34346492&rft_galeid=A775899282&rft_oup_id=10.1210/endocr/bqab158&rfr_iscdi=true