Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome
Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2021-11, Vol.162 (11), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Endocrinology (Philadelphia) |
container_volume | 162 |
creator | Moore, Aleisha M Lohr, Dayanara B Coolen, Lique M Lehman, Michael N |
description | Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined. |
doi_str_mv | 10.1210/endocr/bqab158 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775899282</galeid><oup_id>10.1210/endocr/bqab158</oup_id><sourcerecordid>A775899282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0EokvhyhFZ4gKHtLYTJ_EFKSotIEpbiXK2HHu8dcnaWzsp5N_Xq13KhyohHyzPPPPOjPUi9JKSA8ooOQRvgo6H_Y3qKW8foQUVFS8a2pDHaEEILYuGsWYPPUvpOj-rqiqfor2yKqu6EmyB0kUEr0Y14M6bGJbg8fHPdUhTBNwNI8SEP5-9n_EZTDH4hJU3-PIKXMSdtZBrx5waf4T4HTuPFf4SDAw4WHwRhlnPaXQan9-q6JTHX-dNixU8R0-sGhK82N376NvJ8eXRx-L0_MOno-600JyKsTAVo6bnjBkBtuFMldwCr4kumRB1z1qqRdVADpqGm0zbGmxpVN8D11zV5T56t9VdT_0KjM7DRjXIdXQrFWcZlJN_Z7y7kstwK9uKMFGyLPBmJxDDzQRplCuXNAyD8hCmJBnnLWkFr5uMvv4HvQ5T9Hk9yVpBa95S0v6mlmoA6bwNua_eiMquaXgrBGs3bQ8eoPIxsHI6eLAuxx8q0DGkFMHe70iJ3NhEbm0idzbJBa_-_Jl7_JcvMvB2C4Rp_T-xO5PLybQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891658108</pqid></control><display><type>article</type><title>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Moore, Aleisha M ; Lohr, Dayanara B ; Coolen, Lique M ; Lehman, Michael N</creator><creatorcontrib>Moore, Aleisha M ; Lohr, Dayanara B ; Coolen, Lique M ; Lehman, Michael N</creatorcontrib><description>Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.</description><identifier>ISSN: 0013-7227</identifier><identifier>ISSN: 1945-7170</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/endocr/bqab158</identifier><identifier>PMID: 34346492</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Afferent Pathways - drug effects ; Afferent Pathways - metabolism ; Androgen receptors ; Androgens ; Androgens - blood ; Androgens - pharmacology ; Animals ; Brain ; Disease Models, Animal ; Dynorphin ; Dynorphins - metabolism ; Endocrine disorders ; Endocrinology ; Feedback ; Female ; GABA ; Gene expression ; Genes ; Glutamatergic transmission ; Glycoproteins ; Gonadotropin-releasing hormone ; Hypothalamus ; Hypothalamus (lateral) ; Kiss1 protein ; Kisspeptins - metabolism ; Luteinizing hormone ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Negative feedback ; Neurokinin ; Neurokinin B ; Neurokinin B - metabolism ; Neurons ; Neurons - drug effects ; Neurons - metabolism ; Neurons - pathology ; Neurons - physiology ; Neurons, Afferent - drug effects ; Neurons, Afferent - metabolism ; Neurosecretory Systems - drug effects ; Neurosecretory Systems - metabolism ; Ovaries ; Pathogenesis ; Periventricular nucleus ; Phenotypes ; Pituitary (anterior) ; Pituitary hormones ; Polycystic ovary syndrome ; Polycystic Ovary Syndrome - metabolism ; Polycystic Ovary Syndrome - pathology ; Polycystic Ovary Syndrome - physiopathology ; Polycystic Ovary Syndrome - psychology ; Pregnancy ; Pregnant women ; Prenatal experience ; Prenatal Exposure Delayed Effects - metabolism ; Prenatal Exposure Delayed Effects - pathology ; Prenatal Exposure Delayed Effects - psychology ; Preoptic area ; Progesterone ; Pulse generators ; Receptors ; Sensory neurons ; Sexual dimorphism ; Stein-Leventhal syndrome ; Steroids ; γ-Aminobutyric acid</subject><ispartof>Endocrinology (Philadelphia), 2021-11, Vol.162 (11), p.1</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</citedby><cites>FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</cites><orcidid>0000-0002-8675-8271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34346492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Aleisha M</creatorcontrib><creatorcontrib>Lohr, Dayanara B</creatorcontrib><creatorcontrib>Coolen, Lique M</creatorcontrib><creatorcontrib>Lehman, Michael N</creatorcontrib><title>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.</description><subject>Afferent Pathways - drug effects</subject><subject>Afferent Pathways - metabolism</subject><subject>Androgen receptors</subject><subject>Androgens</subject><subject>Androgens - blood</subject><subject>Androgens - pharmacology</subject><subject>Animals</subject><subject>Brain</subject><subject>Disease Models, Animal</subject><subject>Dynorphin</subject><subject>Dynorphins - metabolism</subject><subject>Endocrine disorders</subject><subject>Endocrinology</subject><subject>Feedback</subject><subject>Female</subject><subject>GABA</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glutamatergic transmission</subject><subject>Glycoproteins</subject><subject>Gonadotropin-releasing hormone</subject><subject>Hypothalamus</subject><subject>Hypothalamus (lateral)</subject><subject>Kiss1 protein</subject><subject>Kisspeptins - metabolism</subject><subject>Luteinizing hormone</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Negative feedback</subject><subject>Neurokinin</subject><subject>Neurokinin B</subject><subject>Neurokinin B - metabolism</subject><subject>Neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Neurons - physiology</subject><subject>Neurons, Afferent - drug effects</subject><subject>Neurons, Afferent - metabolism</subject><subject>Neurosecretory Systems - drug effects</subject><subject>Neurosecretory Systems - metabolism</subject><subject>Ovaries</subject><subject>Pathogenesis</subject><subject>Periventricular nucleus</subject><subject>Phenotypes</subject><subject>Pituitary (anterior)</subject><subject>Pituitary hormones</subject><subject>Polycystic ovary syndrome</subject><subject>Polycystic Ovary Syndrome - metabolism</subject><subject>Polycystic Ovary Syndrome - pathology</subject><subject>Polycystic Ovary Syndrome - physiopathology</subject><subject>Polycystic Ovary Syndrome - psychology</subject><subject>Pregnancy</subject><subject>Pregnant women</subject><subject>Prenatal experience</subject><subject>Prenatal Exposure Delayed Effects - metabolism</subject><subject>Prenatal Exposure Delayed Effects - pathology</subject><subject>Prenatal Exposure Delayed Effects - psychology</subject><subject>Preoptic area</subject><subject>Progesterone</subject><subject>Pulse generators</subject><subject>Receptors</subject><subject>Sensory neurons</subject><subject>Sexual dimorphism</subject><subject>Stein-Leventhal syndrome</subject><subject>Steroids</subject><subject>γ-Aminobutyric acid</subject><issn>0013-7227</issn><issn>1945-7170</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0EokvhyhFZ4gKHtLYTJ_EFKSotIEpbiXK2HHu8dcnaWzsp5N_Xq13KhyohHyzPPPPOjPUi9JKSA8ooOQRvgo6H_Y3qKW8foQUVFS8a2pDHaEEILYuGsWYPPUvpOj-rqiqfor2yKqu6EmyB0kUEr0Y14M6bGJbg8fHPdUhTBNwNI8SEP5-9n_EZTDH4hJU3-PIKXMSdtZBrx5waf4T4HTuPFf4SDAw4WHwRhlnPaXQan9-q6JTHX-dNixU8R0-sGhK82N376NvJ8eXRx-L0_MOno-600JyKsTAVo6bnjBkBtuFMldwCr4kumRB1z1qqRdVADpqGm0zbGmxpVN8D11zV5T56t9VdT_0KjM7DRjXIdXQrFWcZlJN_Z7y7kstwK9uKMFGyLPBmJxDDzQRplCuXNAyD8hCmJBnnLWkFr5uMvv4HvQ5T9Hk9yVpBa95S0v6mlmoA6bwNua_eiMquaXgrBGs3bQ8eoPIxsHI6eLAuxx8q0DGkFMHe70iJ3NhEbm0idzbJBa_-_Jl7_JcvMvB2C4Rp_T-xO5PLybQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Moore, Aleisha M</creator><creator>Lohr, Dayanara B</creator><creator>Coolen, Lique M</creator><creator>Lehman, Michael N</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8675-8271</orcidid></search><sort><creationdate>20211101</creationdate><title>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</title><author>Moore, Aleisha M ; Lohr, Dayanara B ; Coolen, Lique M ; Lehman, Michael N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-d421db522d9ef752a35fe560c32996b281c947e5fed75dd42f6ef3dabbe5c5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Afferent Pathways - drug effects</topic><topic>Afferent Pathways - metabolism</topic><topic>Androgen receptors</topic><topic>Androgens</topic><topic>Androgens - blood</topic><topic>Androgens - pharmacology</topic><topic>Animals</topic><topic>Brain</topic><topic>Disease Models, Animal</topic><topic>Dynorphin</topic><topic>Dynorphins - metabolism</topic><topic>Endocrine disorders</topic><topic>Endocrinology</topic><topic>Feedback</topic><topic>Female</topic><topic>GABA</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glutamatergic transmission</topic><topic>Glycoproteins</topic><topic>Gonadotropin-releasing hormone</topic><topic>Hypothalamus</topic><topic>Hypothalamus (lateral)</topic><topic>Kiss1 protein</topic><topic>Kisspeptins - metabolism</topic><topic>Luteinizing hormone</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Negative feedback</topic><topic>Neurokinin</topic><topic>Neurokinin B</topic><topic>Neurokinin B - metabolism</topic><topic>Neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Neurons - physiology</topic><topic>Neurons, Afferent - drug effects</topic><topic>Neurons, Afferent - metabolism</topic><topic>Neurosecretory Systems - drug effects</topic><topic>Neurosecretory Systems - metabolism</topic><topic>Ovaries</topic><topic>Pathogenesis</topic><topic>Periventricular nucleus</topic><topic>Phenotypes</topic><topic>Pituitary (anterior)</topic><topic>Pituitary hormones</topic><topic>Polycystic ovary syndrome</topic><topic>Polycystic Ovary Syndrome - metabolism</topic><topic>Polycystic Ovary Syndrome - pathology</topic><topic>Polycystic Ovary Syndrome - physiopathology</topic><topic>Polycystic Ovary Syndrome - psychology</topic><topic>Pregnancy</topic><topic>Pregnant women</topic><topic>Prenatal experience</topic><topic>Prenatal Exposure Delayed Effects - metabolism</topic><topic>Prenatal Exposure Delayed Effects - pathology</topic><topic>Prenatal Exposure Delayed Effects - psychology</topic><topic>Preoptic area</topic><topic>Progesterone</topic><topic>Pulse generators</topic><topic>Receptors</topic><topic>Sensory neurons</topic><topic>Sexual dimorphism</topic><topic>Stein-Leventhal syndrome</topic><topic>Steroids</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Aleisha M</creatorcontrib><creatorcontrib>Lohr, Dayanara B</creatorcontrib><creatorcontrib>Coolen, Lique M</creatorcontrib><creatorcontrib>Lehman, Michael N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Aleisha M</au><au>Lohr, Dayanara B</au><au>Coolen, Lique M</au><au>Lehman, Michael N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>162</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>0013-7227</issn><issn>1945-7170</issn><eissn>1945-7170</eissn><abstract>Polycystic ovarian syndrome (PCOS), the most common endocrinopathy affecting women worldwide, is characterized by elevated luteinizing hormone (LH) pulse frequency due to the impaired suppression of gonadotrophin-releasing hormone (GnRH) release by steroid hormone negative feedback. Although neurons that co-express kisspeptin, neurokinin B, and dynorphin (KNDy cells) were recently defined as the GnRH/LH pulse generator, little is understood about their role in the pathogenesis of PCOS. We used a prenatal androgen-treated (PNA) mouse model of PCOS to determine whether changes in KNDy neurons or their afferent network underlie altered negative feedback. First, we identified elevated androgen receptor gene expression in KNDy cells of PNA mice, whereas progesterone receptor and dynorphin gene expression was significantly reduced, suggesting elevated androgens in PCOS disrupt progesterone negative feedback via direct actions upon KNDy cells. Second, we discovered GABAergic and glutamatergic synaptic input to KNDy neurons was reduced in PNA mice. Retrograde monosynaptic tract-tracing revealed a dramatic reduction in input originates from sexually dimorphic afferents in the preoptic area, anteroventral periventricular nucleus, anterior hypothalamic area and lateral hypothalamus. These results reveal 2 sites of neuronal alterations potentially responsible for defects in negative feedback in PCOS: changes in gene expression within KNDy neurons, and changes in synaptic inputs from steroid hormone-responsive hypothalamic regions. How each of these changes contribute to the neuroendocrine phenotype seen in in PCOS, and the role of specific sets of upstream KNDy afferents in the process, remains to be determined.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>34346492</pmid><doi>10.1210/endocr/bqab158</doi><orcidid>https://orcid.org/0000-0002-8675-8271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2021-11, Vol.162 (11), p.1 |
issn | 0013-7227 1945-7170 1945-7170 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8402932 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Afferent Pathways - drug effects Afferent Pathways - metabolism Androgen receptors Androgens Androgens - blood Androgens - pharmacology Animals Brain Disease Models, Animal Dynorphin Dynorphins - metabolism Endocrine disorders Endocrinology Feedback Female GABA Gene expression Genes Glutamatergic transmission Glycoproteins Gonadotropin-releasing hormone Hypothalamus Hypothalamus (lateral) Kiss1 protein Kisspeptins - metabolism Luteinizing hormone Mice Mice, Inbred C57BL Mice, Transgenic Negative feedback Neurokinin Neurokinin B Neurokinin B - metabolism Neurons Neurons - drug effects Neurons - metabolism Neurons - pathology Neurons - physiology Neurons, Afferent - drug effects Neurons, Afferent - metabolism Neurosecretory Systems - drug effects Neurosecretory Systems - metabolism Ovaries Pathogenesis Periventricular nucleus Phenotypes Pituitary (anterior) Pituitary hormones Polycystic ovary syndrome Polycystic Ovary Syndrome - metabolism Polycystic Ovary Syndrome - pathology Polycystic Ovary Syndrome - physiopathology Polycystic Ovary Syndrome - psychology Pregnancy Pregnant women Prenatal experience Prenatal Exposure Delayed Effects - metabolism Prenatal Exposure Delayed Effects - pathology Prenatal Exposure Delayed Effects - psychology Preoptic area Progesterone Pulse generators Receptors Sensory neurons Sexual dimorphism Stein-Leventhal syndrome Steroids γ-Aminobutyric acid |
title | Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prenatal%20Androgen%20Exposure%20Alters%20KNDy%20Neurons%20and%20Their%20Afferent%20Network%20in%20a%20Model%20of%20Polycystic%20Ovarian%20Syndrome&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Moore,%20Aleisha%20M&rft.date=2021-11-01&rft.volume=162&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/endocr/bqab158&rft_dat=%3Cgale_pubme%3EA775899282%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891658108&rft_id=info:pmid/34346492&rft_galeid=A775899282&rft_oup_id=10.1210/endocr/bqab158&rfr_iscdi=true |