Fatigue Performance of Metal–Composite Friction Spot Joints
Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum...
Gespeichert in:
Veröffentlicht in: | Materials 2021-08, Vol.14 (16), p.4516 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 4516 |
container_title | Materials |
container_volume | 14 |
creator | Goushegir, Seyed Mohammad Santos, Jorge F. dos Amancio-Filho, Sergio T. |
description | Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength. |
doi_str_mv | 10.3390/ma14164516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8401522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566033116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</originalsourceid><addsrcrecordid>eNpdkdtKAzEQhoMottTe-AQL3oiwmmSS7O6FghTrgYqCeh3SNFtTdjc1yQre-Q6-oU_ilhZPw8AMzMfPzPwI7RN8DFDgk1oRRgTjRGyhPikKkZKCse1ffQ8NQ1jgLgBITotd1APGGGDI--h0rKKdtya5N750vlaNNokrk1sTVfX5_jFy9dIFG00y9lZH65rkYelicuNsE8Me2ilVFcxwUwfoaXzxOLpKJ3eX16PzSaohh5jSIhMacyoyhZXJppoAz-mUgpmRTHHGFKdMMChBMaahLNjM4Jwb3mVXpjBAZ2vdZTutzUybJnpVyaW3tfJv0ikr_04a-yzn7lXmDBNOaSdwuBHw7qU1IcraBm2qSjXGtUFSLsTqPUR06ME_dOFa33TnrSgOOc4K1lFHa0p7F4I35fcyBMuVMfLHGPgCeNZ-Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565380794</pqid></control><display><type>article</type><title>Fatigue Performance of Metal–Composite Friction Spot Joints</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Goushegir, Seyed Mohammad ; Santos, Jorge F. dos ; Amancio-Filho, Sergio T.</creator><creatorcontrib>Goushegir, Seyed Mohammad ; Santos, Jorge F. dos ; Amancio-Filho, Sergio T.</creatorcontrib><description>Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14164516</identifier><identifier>PMID: 34443038</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adhesive bonding ; Aircraft ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Carbon fibers ; Composite materials ; Dynamic loads ; Fatigue life ; Feasibility studies ; Fiber reinforced materials ; Friction ; Interfacial bonding ; Investigations ; Joining ; Metal fatigue ; Polymer matrix composites ; Polymers ; Polyphenylene sulfides ; Shear strength ; Surface treatment</subject><ispartof>Materials, 2021-08, Vol.14 (16), p.4516</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</citedby><cites>FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</cites><orcidid>0000-0002-1886-1349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401522/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401522/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids></links><search><creatorcontrib>Goushegir, Seyed Mohammad</creatorcontrib><creatorcontrib>Santos, Jorge F. dos</creatorcontrib><creatorcontrib>Amancio-Filho, Sergio T.</creatorcontrib><title>Fatigue Performance of Metal–Composite Friction Spot Joints</title><title>Materials</title><description>Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.</description><subject>Adhesive bonding</subject><subject>Aircraft</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Dynamic loads</subject><subject>Fatigue life</subject><subject>Feasibility studies</subject><subject>Fiber reinforced materials</subject><subject>Friction</subject><subject>Interfacial bonding</subject><subject>Investigations</subject><subject>Joining</subject><subject>Metal fatigue</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polyphenylene sulfides</subject><subject>Shear strength</subject><subject>Surface treatment</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdtKAzEQhoMottTe-AQL3oiwmmSS7O6FghTrgYqCeh3SNFtTdjc1yQre-Q6-oU_ilhZPw8AMzMfPzPwI7RN8DFDgk1oRRgTjRGyhPikKkZKCse1ffQ8NQ1jgLgBITotd1APGGGDI--h0rKKdtya5N750vlaNNokrk1sTVfX5_jFy9dIFG00y9lZH65rkYelicuNsE8Me2ilVFcxwUwfoaXzxOLpKJ3eX16PzSaohh5jSIhMacyoyhZXJppoAz-mUgpmRTHHGFKdMMChBMaahLNjM4Jwb3mVXpjBAZ2vdZTutzUybJnpVyaW3tfJv0ikr_04a-yzn7lXmDBNOaSdwuBHw7qU1IcraBm2qSjXGtUFSLsTqPUR06ME_dOFa33TnrSgOOc4K1lFHa0p7F4I35fcyBMuVMfLHGPgCeNZ-Ng</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Goushegir, Seyed Mohammad</creator><creator>Santos, Jorge F. dos</creator><creator>Amancio-Filho, Sergio T.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1886-1349</orcidid></search><sort><creationdate>20210811</creationdate><title>Fatigue Performance of Metal–Composite Friction Spot Joints</title><author>Goushegir, Seyed Mohammad ; Santos, Jorge F. dos ; Amancio-Filho, Sergio T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesive bonding</topic><topic>Aircraft</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Dynamic loads</topic><topic>Fatigue life</topic><topic>Feasibility studies</topic><topic>Fiber reinforced materials</topic><topic>Friction</topic><topic>Interfacial bonding</topic><topic>Investigations</topic><topic>Joining</topic><topic>Metal fatigue</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polyphenylene sulfides</topic><topic>Shear strength</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goushegir, Seyed Mohammad</creatorcontrib><creatorcontrib>Santos, Jorge F. dos</creatorcontrib><creatorcontrib>Amancio-Filho, Sergio T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goushegir, Seyed Mohammad</au><au>Santos, Jorge F. dos</au><au>Amancio-Filho, Sergio T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Performance of Metal–Composite Friction Spot Joints</atitle><jtitle>Materials</jtitle><date>2021-08-11</date><risdate>2021</risdate><volume>14</volume><issue>16</issue><spage>4516</spage><pages>4516-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34443038</pmid><doi>10.3390/ma14164516</doi><orcidid>https://orcid.org/0000-0002-1886-1349</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-08, Vol.14 (16), p.4516 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8401522 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adhesive bonding Aircraft Alloys Aluminum alloys Aluminum base alloys Carbon fibers Composite materials Dynamic loads Fatigue life Feasibility studies Fiber reinforced materials Friction Interfacial bonding Investigations Joining Metal fatigue Polymer matrix composites Polymers Polyphenylene sulfides Shear strength Surface treatment |
title | Fatigue Performance of Metal–Composite Friction Spot Joints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Performance%20of%20Metal%E2%80%93Composite%20Friction%20Spot%20Joints&rft.jtitle=Materials&rft.au=Goushegir,%20Seyed%20Mohammad&rft.date=2021-08-11&rft.volume=14&rft.issue=16&rft.spage=4516&rft.pages=4516-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14164516&rft_dat=%3Cproquest_pubme%3E2566033116%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565380794&rft_id=info:pmid/34443038&rfr_iscdi=true |