Fatigue Performance of Metal–Composite Friction Spot Joints

Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-08, Vol.14 (16), p.4516
Hauptverfasser: Goushegir, Seyed Mohammad, Santos, Jorge F. dos, Amancio-Filho, Sergio T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 4516
container_title Materials
container_volume 14
creator Goushegir, Seyed Mohammad
Santos, Jorge F. dos
Amancio-Filho, Sergio T.
description Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.
doi_str_mv 10.3390/ma14164516
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8401522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566033116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</originalsourceid><addsrcrecordid>eNpdkdtKAzEQhoMottTe-AQL3oiwmmSS7O6FghTrgYqCeh3SNFtTdjc1yQre-Q6-oU_ilhZPw8AMzMfPzPwI7RN8DFDgk1oRRgTjRGyhPikKkZKCse1ffQ8NQ1jgLgBITotd1APGGGDI--h0rKKdtya5N750vlaNNokrk1sTVfX5_jFy9dIFG00y9lZH65rkYelicuNsE8Me2ilVFcxwUwfoaXzxOLpKJ3eX16PzSaohh5jSIhMacyoyhZXJppoAz-mUgpmRTHHGFKdMMChBMaahLNjM4Jwb3mVXpjBAZ2vdZTutzUybJnpVyaW3tfJv0ikr_04a-yzn7lXmDBNOaSdwuBHw7qU1IcraBm2qSjXGtUFSLsTqPUR06ME_dOFa33TnrSgOOc4K1lFHa0p7F4I35fcyBMuVMfLHGPgCeNZ-Ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565380794</pqid></control><display><type>article</type><title>Fatigue Performance of Metal–Composite Friction Spot Joints</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Goushegir, Seyed Mohammad ; Santos, Jorge F. dos ; Amancio-Filho, Sergio T.</creator><creatorcontrib>Goushegir, Seyed Mohammad ; Santos, Jorge F. dos ; Amancio-Filho, Sergio T.</creatorcontrib><description>Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14164516</identifier><identifier>PMID: 34443038</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adhesive bonding ; Aircraft ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Carbon fibers ; Composite materials ; Dynamic loads ; Fatigue life ; Feasibility studies ; Fiber reinforced materials ; Friction ; Interfacial bonding ; Investigations ; Joining ; Metal fatigue ; Polymer matrix composites ; Polymers ; Polyphenylene sulfides ; Shear strength ; Surface treatment</subject><ispartof>Materials, 2021-08, Vol.14 (16), p.4516</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</citedby><cites>FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</cites><orcidid>0000-0002-1886-1349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401522/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401522/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids></links><search><creatorcontrib>Goushegir, Seyed Mohammad</creatorcontrib><creatorcontrib>Santos, Jorge F. dos</creatorcontrib><creatorcontrib>Amancio-Filho, Sergio T.</creatorcontrib><title>Fatigue Performance of Metal–Composite Friction Spot Joints</title><title>Materials</title><description>Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.</description><subject>Adhesive bonding</subject><subject>Aircraft</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Dynamic loads</subject><subject>Fatigue life</subject><subject>Feasibility studies</subject><subject>Fiber reinforced materials</subject><subject>Friction</subject><subject>Interfacial bonding</subject><subject>Investigations</subject><subject>Joining</subject><subject>Metal fatigue</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polyphenylene sulfides</subject><subject>Shear strength</subject><subject>Surface treatment</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdtKAzEQhoMottTe-AQL3oiwmmSS7O6FghTrgYqCeh3SNFtTdjc1yQre-Q6-oU_ilhZPw8AMzMfPzPwI7RN8DFDgk1oRRgTjRGyhPikKkZKCse1ffQ8NQ1jgLgBITotd1APGGGDI--h0rKKdtya5N750vlaNNokrk1sTVfX5_jFy9dIFG00y9lZH65rkYelicuNsE8Me2ilVFcxwUwfoaXzxOLpKJ3eX16PzSaohh5jSIhMacyoyhZXJppoAz-mUgpmRTHHGFKdMMChBMaahLNjM4Jwb3mVXpjBAZ2vdZTutzUybJnpVyaW3tfJv0ikr_04a-yzn7lXmDBNOaSdwuBHw7qU1IcraBm2qSjXGtUFSLsTqPUR06ME_dOFa33TnrSgOOc4K1lFHa0p7F4I35fcyBMuVMfLHGPgCeNZ-Ng</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Goushegir, Seyed Mohammad</creator><creator>Santos, Jorge F. dos</creator><creator>Amancio-Filho, Sergio T.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1886-1349</orcidid></search><sort><creationdate>20210811</creationdate><title>Fatigue Performance of Metal–Composite Friction Spot Joints</title><author>Goushegir, Seyed Mohammad ; Santos, Jorge F. dos ; Amancio-Filho, Sergio T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-2976c05267a0ae7bc13582b23ed17a544a524643f3a44c3f94de085e55e585eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesive bonding</topic><topic>Aircraft</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Dynamic loads</topic><topic>Fatigue life</topic><topic>Feasibility studies</topic><topic>Fiber reinforced materials</topic><topic>Friction</topic><topic>Interfacial bonding</topic><topic>Investigations</topic><topic>Joining</topic><topic>Metal fatigue</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polyphenylene sulfides</topic><topic>Shear strength</topic><topic>Surface treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goushegir, Seyed Mohammad</creatorcontrib><creatorcontrib>Santos, Jorge F. dos</creatorcontrib><creatorcontrib>Amancio-Filho, Sergio T.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goushegir, Seyed Mohammad</au><au>Santos, Jorge F. dos</au><au>Amancio-Filho, Sergio T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Performance of Metal–Composite Friction Spot Joints</atitle><jtitle>Materials</jtitle><date>2021-08-11</date><risdate>2021</risdate><volume>14</volume><issue>16</issue><spage>4516</spage><pages>4516-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34443038</pmid><doi>10.3390/ma14164516</doi><orcidid>https://orcid.org/0000-0002-1886-1349</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-08, Vol.14 (16), p.4516
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8401522
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adhesive bonding
Aircraft
Alloys
Aluminum alloys
Aluminum base alloys
Carbon fibers
Composite materials
Dynamic loads
Fatigue life
Feasibility studies
Fiber reinforced materials
Friction
Interfacial bonding
Investigations
Joining
Metal fatigue
Polymer matrix composites
Polymers
Polyphenylene sulfides
Shear strength
Surface treatment
title Fatigue Performance of Metal–Composite Friction Spot Joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Performance%20of%20Metal%E2%80%93Composite%20Friction%20Spot%20Joints&rft.jtitle=Materials&rft.au=Goushegir,%20Seyed%20Mohammad&rft.date=2021-08-11&rft.volume=14&rft.issue=16&rft.spage=4516&rft.pages=4516-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14164516&rft_dat=%3Cproquest_pubme%3E2566033116%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565380794&rft_id=info:pmid/34443038&rfr_iscdi=true