Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection
The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2021-08, Vol.10 (16), p.3567 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 3567 |
container_title | Journal of clinical medicine |
container_volume | 10 |
creator | Karami, Hassan Derakhshani, Afshin Ghasemigol, Mohammad Fereidouni, Mohammad Miri-Moghaddam, Ebrahim Baradaran, Behzad Tabrizi, Neda Jalili Najafi, Souzan Solimando, Antonio Giovanni Marsh, Leigh M Silvestris, Nicola De Summa, Simona Paradiso, Angelo Virgilio Racanelli, Vito Safarpour, Hossein |
description | The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including
and
, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway,
signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19. |
doi_str_mv | 10.3390/jcm10163567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8397209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566038125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-2adc9cedefe59abf7a083f3708126a4fe5895f3d2e3fbd134b828dc2763621443</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhSNERavSFXtkiQ0SSvEribNBGo1KO2LaShTK0nLsmxkPiT21E8r8nP5TPH1pqDe27_187pFPlr0j-JixGn9e6Z5gUrKirF5lBxRXVY6ZYK93zvvZUYwrnJYQnJLqTbbPOOdElPQgu_sFdrEcwKBTcICmPj_5uw4Qo_UOXcBw68NvNHGq20QbU7tvrEvwrR2W6FzpZbqhOajgrFuga9VZo4bt08GjmQE32HaDvsEGnXszdhCRcgadjc39tIgmMXpt1fCkeDX5fpVP_XVO0cy1oLdSb7O9VnURjh73w-zn15Mf07N8fnk6m07muea4HnKqjK41GGihqFXTVgoL1rIKC0JLxVNV1EXLDAXWNoYw3ggqjKZVyUpKOGeH2ZcH3fXY9GB0Mh9UJ9fB9ipspFdW_t9xdikX_o8UrK4orpPAx0eB4G9GiIPsbdTQdcqBH6OkRVmmPAgtEvrhBbryY0i_fE8VVJSk2lKfHigdfIwB2mczBMtt-nIn_US_3_X_zD5lzf4BQAWsSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565286175</pqid></control><display><type>article</type><title>Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Karami, Hassan ; Derakhshani, Afshin ; Ghasemigol, Mohammad ; Fereidouni, Mohammad ; Miri-Moghaddam, Ebrahim ; Baradaran, Behzad ; Tabrizi, Neda Jalili ; Najafi, Souzan ; Solimando, Antonio Giovanni ; Marsh, Leigh M ; Silvestris, Nicola ; De Summa, Simona ; Paradiso, Angelo Virgilio ; Racanelli, Vito ; Safarpour, Hossein</creator><creatorcontrib>Karami, Hassan ; Derakhshani, Afshin ; Ghasemigol, Mohammad ; Fereidouni, Mohammad ; Miri-Moghaddam, Ebrahim ; Baradaran, Behzad ; Tabrizi, Neda Jalili ; Najafi, Souzan ; Solimando, Antonio Giovanni ; Marsh, Leigh M ; Silvestris, Nicola ; De Summa, Simona ; Paradiso, Angelo Virgilio ; Racanelli, Vito ; Safarpour, Hossein</creatorcontrib><description>The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including
and
, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway,
signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm10163567</identifier><identifier>PMID: 34441862</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Biosynthesis ; Clinical medicine ; Coronaviruses ; COVID-19 ; Cytokines ; Datasets ; Disease transmission ; Epigenetics ; Gene expression ; Genomes ; Infections ; Kidneys ; Machine learning ; Pathogenesis ; Pneumonia ; Severe acute respiratory syndrome coronavirus 2 ; Viruses</subject><ispartof>Journal of clinical medicine, 2021-08, Vol.10 (16), p.3567</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-2adc9cedefe59abf7a083f3708126a4fe5895f3d2e3fbd134b828dc2763621443</citedby><cites>FETCH-LOGICAL-c409t-2adc9cedefe59abf7a083f3708126a4fe5895f3d2e3fbd134b828dc2763621443</cites><orcidid>0000-0001-9607-3754 ; 0000-0001-6495-2295 ; 0000-0001-6661-0942 ; 0000-0001-9435-2450 ; 0000-0002-2293-9698 ; 0000-0002-8639-1940 ; 0000-0001-9883-9186 ; 0000-0003-2915-8031 ; 0000-0002-3243-233X ; 0000-0002-1754-9249 ; 0000-0001-7814-7318 ; 0000-0002-8642-6795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397209/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8397209/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34441862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karami, Hassan</creatorcontrib><creatorcontrib>Derakhshani, Afshin</creatorcontrib><creatorcontrib>Ghasemigol, Mohammad</creatorcontrib><creatorcontrib>Fereidouni, Mohammad</creatorcontrib><creatorcontrib>Miri-Moghaddam, Ebrahim</creatorcontrib><creatorcontrib>Baradaran, Behzad</creatorcontrib><creatorcontrib>Tabrizi, Neda Jalili</creatorcontrib><creatorcontrib>Najafi, Souzan</creatorcontrib><creatorcontrib>Solimando, Antonio Giovanni</creatorcontrib><creatorcontrib>Marsh, Leigh M</creatorcontrib><creatorcontrib>Silvestris, Nicola</creatorcontrib><creatorcontrib>De Summa, Simona</creatorcontrib><creatorcontrib>Paradiso, Angelo Virgilio</creatorcontrib><creatorcontrib>Racanelli, Vito</creatorcontrib><creatorcontrib>Safarpour, Hossein</creatorcontrib><title>Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection</title><title>Journal of clinical medicine</title><addtitle>J Clin Med</addtitle><description>The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including
and
, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway,
signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biosynthesis</subject><subject>Clinical medicine</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cytokines</subject><subject>Datasets</subject><subject>Disease transmission</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Infections</subject><subject>Kidneys</subject><subject>Machine learning</subject><subject>Pathogenesis</subject><subject>Pneumonia</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viruses</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtv1DAUhSNERavSFXtkiQ0SSvEribNBGo1KO2LaShTK0nLsmxkPiT21E8r8nP5TPH1pqDe27_187pFPlr0j-JixGn9e6Z5gUrKirF5lBxRXVY6ZYK93zvvZUYwrnJYQnJLqTbbPOOdElPQgu_sFdrEcwKBTcICmPj_5uw4Qo_UOXcBw68NvNHGq20QbU7tvrEvwrR2W6FzpZbqhOajgrFuga9VZo4bt08GjmQE32HaDvsEGnXszdhCRcgadjc39tIgmMXpt1fCkeDX5fpVP_XVO0cy1oLdSb7O9VnURjh73w-zn15Mf07N8fnk6m07muea4HnKqjK41GGihqFXTVgoL1rIKC0JLxVNV1EXLDAXWNoYw3ggqjKZVyUpKOGeH2ZcH3fXY9GB0Mh9UJ9fB9ipspFdW_t9xdikX_o8UrK4orpPAx0eB4G9GiIPsbdTQdcqBH6OkRVmmPAgtEvrhBbryY0i_fE8VVJSk2lKfHigdfIwB2mczBMtt-nIn_US_3_X_zD5lzf4BQAWsSA</recordid><startdate>20210813</startdate><enddate>20210813</enddate><creator>Karami, Hassan</creator><creator>Derakhshani, Afshin</creator><creator>Ghasemigol, Mohammad</creator><creator>Fereidouni, Mohammad</creator><creator>Miri-Moghaddam, Ebrahim</creator><creator>Baradaran, Behzad</creator><creator>Tabrizi, Neda Jalili</creator><creator>Najafi, Souzan</creator><creator>Solimando, Antonio Giovanni</creator><creator>Marsh, Leigh M</creator><creator>Silvestris, Nicola</creator><creator>De Summa, Simona</creator><creator>Paradiso, Angelo Virgilio</creator><creator>Racanelli, Vito</creator><creator>Safarpour, Hossein</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9607-3754</orcidid><orcidid>https://orcid.org/0000-0001-6495-2295</orcidid><orcidid>https://orcid.org/0000-0001-6661-0942</orcidid><orcidid>https://orcid.org/0000-0001-9435-2450</orcidid><orcidid>https://orcid.org/0000-0002-2293-9698</orcidid><orcidid>https://orcid.org/0000-0002-8639-1940</orcidid><orcidid>https://orcid.org/0000-0001-9883-9186</orcidid><orcidid>https://orcid.org/0000-0003-2915-8031</orcidid><orcidid>https://orcid.org/0000-0002-3243-233X</orcidid><orcidid>https://orcid.org/0000-0002-1754-9249</orcidid><orcidid>https://orcid.org/0000-0001-7814-7318</orcidid><orcidid>https://orcid.org/0000-0002-8642-6795</orcidid></search><sort><creationdate>20210813</creationdate><title>Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection</title><author>Karami, Hassan ; Derakhshani, Afshin ; Ghasemigol, Mohammad ; Fereidouni, Mohammad ; Miri-Moghaddam, Ebrahim ; Baradaran, Behzad ; Tabrizi, Neda Jalili ; Najafi, Souzan ; Solimando, Antonio Giovanni ; Marsh, Leigh M ; Silvestris, Nicola ; De Summa, Simona ; Paradiso, Angelo Virgilio ; Racanelli, Vito ; Safarpour, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-2adc9cedefe59abf7a083f3708126a4fe5895f3d2e3fbd134b828dc2763621443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biosynthesis</topic><topic>Clinical medicine</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cytokines</topic><topic>Datasets</topic><topic>Disease transmission</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Infections</topic><topic>Kidneys</topic><topic>Machine learning</topic><topic>Pathogenesis</topic><topic>Pneumonia</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karami, Hassan</creatorcontrib><creatorcontrib>Derakhshani, Afshin</creatorcontrib><creatorcontrib>Ghasemigol, Mohammad</creatorcontrib><creatorcontrib>Fereidouni, Mohammad</creatorcontrib><creatorcontrib>Miri-Moghaddam, Ebrahim</creatorcontrib><creatorcontrib>Baradaran, Behzad</creatorcontrib><creatorcontrib>Tabrizi, Neda Jalili</creatorcontrib><creatorcontrib>Najafi, Souzan</creatorcontrib><creatorcontrib>Solimando, Antonio Giovanni</creatorcontrib><creatorcontrib>Marsh, Leigh M</creatorcontrib><creatorcontrib>Silvestris, Nicola</creatorcontrib><creatorcontrib>De Summa, Simona</creatorcontrib><creatorcontrib>Paradiso, Angelo Virgilio</creatorcontrib><creatorcontrib>Racanelli, Vito</creatorcontrib><creatorcontrib>Safarpour, Hossein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karami, Hassan</au><au>Derakhshani, Afshin</au><au>Ghasemigol, Mohammad</au><au>Fereidouni, Mohammad</au><au>Miri-Moghaddam, Ebrahim</au><au>Baradaran, Behzad</au><au>Tabrizi, Neda Jalili</au><au>Najafi, Souzan</au><au>Solimando, Antonio Giovanni</au><au>Marsh, Leigh M</au><au>Silvestris, Nicola</au><au>De Summa, Simona</au><au>Paradiso, Angelo Virgilio</au><au>Racanelli, Vito</au><au>Safarpour, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection</atitle><jtitle>Journal of clinical medicine</jtitle><addtitle>J Clin Med</addtitle><date>2021-08-13</date><risdate>2021</risdate><volume>10</volume><issue>16</issue><spage>3567</spage><pages>3567-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including
and
, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway,
signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34441862</pmid><doi>10.3390/jcm10163567</doi><orcidid>https://orcid.org/0000-0001-9607-3754</orcidid><orcidid>https://orcid.org/0000-0001-6495-2295</orcidid><orcidid>https://orcid.org/0000-0001-6661-0942</orcidid><orcidid>https://orcid.org/0000-0001-9435-2450</orcidid><orcidid>https://orcid.org/0000-0002-2293-9698</orcidid><orcidid>https://orcid.org/0000-0002-8639-1940</orcidid><orcidid>https://orcid.org/0000-0001-9883-9186</orcidid><orcidid>https://orcid.org/0000-0003-2915-8031</orcidid><orcidid>https://orcid.org/0000-0002-3243-233X</orcidid><orcidid>https://orcid.org/0000-0002-1754-9249</orcidid><orcidid>https://orcid.org/0000-0001-7814-7318</orcidid><orcidid>https://orcid.org/0000-0002-8642-6795</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0383 |
ispartof | Journal of clinical medicine, 2021-08, Vol.10 (16), p.3567 |
issn | 2077-0383 2077-0383 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8397209 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Algorithms Artificial intelligence Biosynthesis Clinical medicine Coronaviruses COVID-19 Cytokines Datasets Disease transmission Epigenetics Gene expression Genomes Infections Kidneys Machine learning Pathogenesis Pneumonia Severe acute respiratory syndrome coronavirus 2 Viruses |
title | Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20Gene%20Co-Expression%20Network%20Analysis%20Combined%20with%20Machine%20Learning%20Validation%20to%20Identify%20Key%20Modules%20and%20Hub%20Genes%20Associated%20with%20SARS-CoV-2%20Infection&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Karami,%20Hassan&rft.date=2021-08-13&rft.volume=10&rft.issue=16&rft.spage=3567&rft.pages=3567-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm10163567&rft_dat=%3Cproquest_pubme%3E2566038125%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565286175&rft_id=info:pmid/34441862&rfr_iscdi=true |