Time-Dependent Unitary Transformation Method in the Strong-Field-Ionization Regime with the Kramers-Henneberger Picture

Time evolution operators of a strongly ionizing medium are calculated by a time-dependent unitary transformation (TDUT) method. The TDUT method has been employed in a quantum mechanical system composed of discrete states. This method is especially helpful for solving molecular rotational dynamics in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-08, Vol.22 (16), p.8514
Hauptverfasser: Mun, Je-Hoi, Sakai, Hirofumi, Kim, Dong-Eon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 8514
container_title International journal of molecular sciences
container_volume 22
creator Mun, Je-Hoi
Sakai, Hirofumi
Kim, Dong-Eon
description Time evolution operators of a strongly ionizing medium are calculated by a time-dependent unitary transformation (TDUT) method. The TDUT method has been employed in a quantum mechanical system composed of discrete states. This method is especially helpful for solving molecular rotational dynamics in quasi-adiabatic regimes because the strict unitary nature of the propagation operator allows us to set the temporal step size to large; a tight limitation on the temporal step size (δt
doi_str_mv 10.3390/ijms22168514
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8395222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566042333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-ebda6a2431346b6c4f436b231ea515fd1bd7715fa5cf832d53cec4bbbef4ea83</originalsourceid><addsrcrecordid>eNpdUV1PFDEUbYxEcPWNHzAJLz4w2t5-7OyLiUERAgSj63PTdu7sdjPTrm0Hor-ewSUEuPfhnuSenJyTQ8ghox85X9BPfjNkAKYaycQrcsAEQE2pmr9-gvfJ25w3lAIHuXhD9rkQQgJrDsjt0g9Yf8UthhZDqX4HX0z6Wy2TCbmLaTDFx1BdYVnHtvKhKmusfpUUw6o-9di39XkM_t-O9RNXk1p168v6P-8imQFTrs8wBLSYVpiqH96VMeE7steZPuP7hzsjy9Nvy5Oz-vL6-_nJl8va8WZRarStUQYEZ1woq5zoBFcWOEMjmexaZtv5fAJGuq7h0Eru0AlrLXYCTcNn5PNOdjvaAVs3RUym19vkhymljsbr55_g13oVb3TDFxIAJoEPDwIp_hkxFz347LDvTcA4Zg1SKSqATzMjRy-omzimMKXToEBMy-i9o-Mdy6WYc8Lu0Qyj-r5Q_bRQfgePBJWK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624242108</pqid></control><display><type>article</type><title>Time-Dependent Unitary Transformation Method in the Strong-Field-Ionization Regime with the Kramers-Henneberger Picture</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mun, Je-Hoi ; Sakai, Hirofumi ; Kim, Dong-Eon</creator><creatorcontrib>Mun, Je-Hoi ; Sakai, Hirofumi ; Kim, Dong-Eon</creatorcontrib><description>Time evolution operators of a strongly ionizing medium are calculated by a time-dependent unitary transformation (TDUT) method. The TDUT method has been employed in a quantum mechanical system composed of discrete states. This method is especially helpful for solving molecular rotational dynamics in quasi-adiabatic regimes because the strict unitary nature of the propagation operator allows us to set the temporal step size to large; a tight limitation on the temporal step size (δt&lt;&lt;1) can be circumvented by the strict unitary nature. On the other hand, in a strongly ionizing system where the Hamiltonian is not Hermitian, the same approach cannot be directly applied because it is demanding to define a set of field-dressed eigenstates. In this study, the TDUT method was applied to the ionizing regime using the Kramers-Henneberger frame, in which the strong-field-dressed discrete eigenstates are given by the field-free discrete eigenstates in a moving frame. Although the present work verifies the method for a one-dimensional atom as a prototype, the method can be applied to three-dimensional atoms, and molecules exposed to strong laser fields.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22168514</identifier><identifier>PMID: 34445218</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adiabatic ; Eigenvalues ; Eigenvectors ; Ionization ; Lasers ; Mechanical systems ; Methods ; Numerical analysis ; Quantum mechanics</subject><ispartof>International journal of molecular sciences, 2021-08, Vol.22 (16), p.8514</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-ebda6a2431346b6c4f436b231ea515fd1bd7715fa5cf832d53cec4bbbef4ea83</citedby><cites>FETCH-LOGICAL-c389t-ebda6a2431346b6c4f436b231ea515fd1bd7715fa5cf832d53cec4bbbef4ea83</cites><orcidid>0000-0002-8178-2969 ; 0000-0003-0074-4811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395222/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8395222/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Mun, Je-Hoi</creatorcontrib><creatorcontrib>Sakai, Hirofumi</creatorcontrib><creatorcontrib>Kim, Dong-Eon</creatorcontrib><title>Time-Dependent Unitary Transformation Method in the Strong-Field-Ionization Regime with the Kramers-Henneberger Picture</title><title>International journal of molecular sciences</title><description>Time evolution operators of a strongly ionizing medium are calculated by a time-dependent unitary transformation (TDUT) method. The TDUT method has been employed in a quantum mechanical system composed of discrete states. This method is especially helpful for solving molecular rotational dynamics in quasi-adiabatic regimes because the strict unitary nature of the propagation operator allows us to set the temporal step size to large; a tight limitation on the temporal step size (δt&lt;&lt;1) can be circumvented by the strict unitary nature. On the other hand, in a strongly ionizing system where the Hamiltonian is not Hermitian, the same approach cannot be directly applied because it is demanding to define a set of field-dressed eigenstates. In this study, the TDUT method was applied to the ionizing regime using the Kramers-Henneberger frame, in which the strong-field-dressed discrete eigenstates are given by the field-free discrete eigenstates in a moving frame. Although the present work verifies the method for a one-dimensional atom as a prototype, the method can be applied to three-dimensional atoms, and molecules exposed to strong laser fields.</description><subject>Adiabatic</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Mechanical systems</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Quantum mechanics</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdUV1PFDEUbYxEcPWNHzAJLz4w2t5-7OyLiUERAgSj63PTdu7sdjPTrm0Hor-ewSUEuPfhnuSenJyTQ8ghox85X9BPfjNkAKYaycQrcsAEQE2pmr9-gvfJ25w3lAIHuXhD9rkQQgJrDsjt0g9Yf8UthhZDqX4HX0z6Wy2TCbmLaTDFx1BdYVnHtvKhKmusfpUUw6o-9di39XkM_t-O9RNXk1p168v6P-8imQFTrs8wBLSYVpiqH96VMeE7steZPuP7hzsjy9Nvy5Oz-vL6-_nJl8va8WZRarStUQYEZ1woq5zoBFcWOEMjmexaZtv5fAJGuq7h0Eru0AlrLXYCTcNn5PNOdjvaAVs3RUym19vkhymljsbr55_g13oVb3TDFxIAJoEPDwIp_hkxFz347LDvTcA4Zg1SKSqATzMjRy-omzimMKXToEBMy-i9o-Mdy6WYc8Lu0Qyj-r5Q_bRQfgePBJWK</recordid><startdate>20210807</startdate><enddate>20210807</enddate><creator>Mun, Je-Hoi</creator><creator>Sakai, Hirofumi</creator><creator>Kim, Dong-Eon</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8178-2969</orcidid><orcidid>https://orcid.org/0000-0003-0074-4811</orcidid></search><sort><creationdate>20210807</creationdate><title>Time-Dependent Unitary Transformation Method in the Strong-Field-Ionization Regime with the Kramers-Henneberger Picture</title><author>Mun, Je-Hoi ; Sakai, Hirofumi ; Kim, Dong-Eon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-ebda6a2431346b6c4f436b231ea515fd1bd7715fa5cf832d53cec4bbbef4ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adiabatic</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Mechanical systems</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Quantum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mun, Je-Hoi</creatorcontrib><creatorcontrib>Sakai, Hirofumi</creatorcontrib><creatorcontrib>Kim, Dong-Eon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mun, Je-Hoi</au><au>Sakai, Hirofumi</au><au>Kim, Dong-Eon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Dependent Unitary Transformation Method in the Strong-Field-Ionization Regime with the Kramers-Henneberger Picture</atitle><jtitle>International journal of molecular sciences</jtitle><date>2021-08-07</date><risdate>2021</risdate><volume>22</volume><issue>16</issue><spage>8514</spage><pages>8514-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Time evolution operators of a strongly ionizing medium are calculated by a time-dependent unitary transformation (TDUT) method. The TDUT method has been employed in a quantum mechanical system composed of discrete states. This method is especially helpful for solving molecular rotational dynamics in quasi-adiabatic regimes because the strict unitary nature of the propagation operator allows us to set the temporal step size to large; a tight limitation on the temporal step size (δt&lt;&lt;1) can be circumvented by the strict unitary nature. On the other hand, in a strongly ionizing system where the Hamiltonian is not Hermitian, the same approach cannot be directly applied because it is demanding to define a set of field-dressed eigenstates. In this study, the TDUT method was applied to the ionizing regime using the Kramers-Henneberger frame, in which the strong-field-dressed discrete eigenstates are given by the field-free discrete eigenstates in a moving frame. Although the present work verifies the method for a one-dimensional atom as a prototype, the method can be applied to three-dimensional atoms, and molecules exposed to strong laser fields.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34445218</pmid><doi>10.3390/ijms22168514</doi><orcidid>https://orcid.org/0000-0002-8178-2969</orcidid><orcidid>https://orcid.org/0000-0003-0074-4811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-08, Vol.22 (16), p.8514
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8395222
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adiabatic
Eigenvalues
Eigenvectors
Ionization
Lasers
Mechanical systems
Methods
Numerical analysis
Quantum mechanics
title Time-Dependent Unitary Transformation Method in the Strong-Field-Ionization Regime with the Kramers-Henneberger Picture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Dependent%20Unitary%20Transformation%20Method%20in%20the%20Strong-Field-Ionization%20Regime%20with%20the%20Kramers-Henneberger%20Picture&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Mun,%20Je-Hoi&rft.date=2021-08-07&rft.volume=22&rft.issue=16&rft.spage=8514&rft.pages=8514-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22168514&rft_dat=%3Cproquest_pubme%3E2566042333%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624242108&rft_id=info:pmid/34445218&rfr_iscdi=true