Machine Learning Force Fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2021-08, Vol.121 (16), p.10142-10186 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10186 |
---|---|
container_issue | 16 |
container_start_page | 10142 |
container_title | Chemical reviews |
container_volume | 121 |
creator | Unke, Oliver T Chmiela, Stefan Sauceda, Huziel E Gastegger, Michael Poltavsky, Igor Schütt, Kristof T Tkatchenko, Alexandre Müller, Klaus-Robert |
description | In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs. |
doi_str_mv | 10.1021/acs.chemrev.0c01111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568705459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4Mobk7_AlEGXrx0y8uP1_YiyHAqTLzoOaRpunV07UzWgf-9GatDPZhLCPm873vvQ8gl0BFQBmNt_Mgs7MrZ7YgaCuEckT5IRiNMUnpM-pTSNGKIskfOvF-Gp5QsPiU9zmMqAZI-uXrRZlHWdjiz2tVlPR9OG2fscFraKvfn5KTQlbcX3T0g79OHt8lTNHt9fJ7czyItYr6JYkiEKACkQZuByKjIQ9dYxEkOglHgUhcascA8EzlqnoFMUSJmhnImYuQDcrfPXbfZyubG1hunK7V25Uq7T9XoUv3-qcuFmjdblfAUUhQh4LYLcM1Ha_1GrUpvbFXp2jatV0xSYCgwlQG9-YMum9bVYb1AYRLECJkGiu8p4xrvnS0OwwBVO_0q6FedftXpD1XXP_c41Hz7DsB4D-yqD33_i_wCKvaQuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568705459</pqid></control><display><type>article</type><title>Machine Learning Force Fields</title><source>ACS Publications</source><creator>Unke, Oliver T ; Chmiela, Stefan ; Sauceda, Huziel E ; Gastegger, Michael ; Poltavsky, Igor ; Schütt, Kristof T ; Tkatchenko, Alexandre ; Müller, Klaus-Robert</creator><creatorcontrib>Unke, Oliver T ; Chmiela, Stefan ; Sauceda, Huziel E ; Gastegger, Michael ; Poltavsky, Igor ; Schütt, Kristof T ; Tkatchenko, Alexandre ; Müller, Klaus-Robert</creatorcontrib><description>In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c01111</identifier><identifier>PMID: 33705118</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical bonds ; Computational chemistry ; Electronic structure ; Machine learning ; Potential energy ; Review</subject><ispartof>Chemical reviews, 2021-08, Vol.121 (16), p.10142-10186</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Aug 25, 2021</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</citedby><cites>FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</cites><orcidid>0000-0001-7503-406X ; 0000-0002-3861-7685 ; 0000-0001-6091-3408 ; 0000-0002-3188-7017 ; 0000-0001-8342-0964 ; 0000-0002-1012-4854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c01111$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33705118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Unke, Oliver T</creatorcontrib><creatorcontrib>Chmiela, Stefan</creatorcontrib><creatorcontrib>Sauceda, Huziel E</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Poltavsky, Igor</creatorcontrib><creatorcontrib>Schütt, Kristof T</creatorcontrib><creatorcontrib>Tkatchenko, Alexandre</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><title>Machine Learning Force Fields</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.</description><subject>Chemical bonds</subject><subject>Computational chemistry</subject><subject>Electronic structure</subject><subject>Machine learning</subject><subject>Potential energy</subject><subject>Review</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4Mobk7_AlEGXrx0y8uP1_YiyHAqTLzoOaRpunV07UzWgf-9GatDPZhLCPm873vvQ8gl0BFQBmNt_Mgs7MrZ7YgaCuEckT5IRiNMUnpM-pTSNGKIskfOvF-Gp5QsPiU9zmMqAZI-uXrRZlHWdjiz2tVlPR9OG2fscFraKvfn5KTQlbcX3T0g79OHt8lTNHt9fJ7czyItYr6JYkiEKACkQZuByKjIQ9dYxEkOglHgUhcascA8EzlqnoFMUSJmhnImYuQDcrfPXbfZyubG1hunK7V25Uq7T9XoUv3-qcuFmjdblfAUUhQh4LYLcM1Ha_1GrUpvbFXp2jatV0xSYCgwlQG9-YMum9bVYb1AYRLECJkGiu8p4xrvnS0OwwBVO_0q6FedftXpD1XXP_c41Hz7DsB4D-yqD33_i_wCKvaQuw</recordid><startdate>20210825</startdate><enddate>20210825</enddate><creator>Unke, Oliver T</creator><creator>Chmiela, Stefan</creator><creator>Sauceda, Huziel E</creator><creator>Gastegger, Michael</creator><creator>Poltavsky, Igor</creator><creator>Schütt, Kristof T</creator><creator>Tkatchenko, Alexandre</creator><creator>Müller, Klaus-Robert</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7503-406X</orcidid><orcidid>https://orcid.org/0000-0002-3861-7685</orcidid><orcidid>https://orcid.org/0000-0001-6091-3408</orcidid><orcidid>https://orcid.org/0000-0002-3188-7017</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0002-1012-4854</orcidid></search><sort><creationdate>20210825</creationdate><title>Machine Learning Force Fields</title><author>Unke, Oliver T ; Chmiela, Stefan ; Sauceda, Huziel E ; Gastegger, Michael ; Poltavsky, Igor ; Schütt, Kristof T ; Tkatchenko, Alexandre ; Müller, Klaus-Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical bonds</topic><topic>Computational chemistry</topic><topic>Electronic structure</topic><topic>Machine learning</topic><topic>Potential energy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unke, Oliver T</creatorcontrib><creatorcontrib>Chmiela, Stefan</creatorcontrib><creatorcontrib>Sauceda, Huziel E</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Poltavsky, Igor</creatorcontrib><creatorcontrib>Schütt, Kristof T</creatorcontrib><creatorcontrib>Tkatchenko, Alexandre</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unke, Oliver T</au><au>Chmiela, Stefan</au><au>Sauceda, Huziel E</au><au>Gastegger, Michael</au><au>Poltavsky, Igor</au><au>Schütt, Kristof T</au><au>Tkatchenko, Alexandre</au><au>Müller, Klaus-Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Force Fields</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2021-08-25</date><risdate>2021</risdate><volume>121</volume><issue>16</issue><spage>10142</spage><epage>10186</epage><pages>10142-10186</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33705118</pmid><doi>10.1021/acs.chemrev.0c01111</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0001-7503-406X</orcidid><orcidid>https://orcid.org/0000-0002-3861-7685</orcidid><orcidid>https://orcid.org/0000-0001-6091-3408</orcidid><orcidid>https://orcid.org/0000-0002-3188-7017</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0002-1012-4854</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2021-08, Vol.121 (16), p.10142-10186 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391964 |
source | ACS Publications |
subjects | Chemical bonds Computational chemistry Electronic structure Machine learning Potential energy Review |
title | Machine Learning Force Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Force%20Fields&rft.jtitle=Chemical%20reviews&rft.au=Unke,%20Oliver%20T&rft.date=2021-08-25&rft.volume=121&rft.issue=16&rft.spage=10142&rft.epage=10186&rft.pages=10142-10186&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c01111&rft_dat=%3Cproquest_pubme%3E2568705459%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568705459&rft_id=info:pmid/33705118&rfr_iscdi=true |