Machine Learning Force Fields

In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2021-08, Vol.121 (16), p.10142-10186
Hauptverfasser: Unke, Oliver T, Chmiela, Stefan, Sauceda, Huziel E, Gastegger, Michael, Poltavsky, Igor, Schütt, Kristof T, Tkatchenko, Alexandre, Müller, Klaus-Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10186
container_issue 16
container_start_page 10142
container_title Chemical reviews
container_volume 121
creator Unke, Oliver T
Chmiela, Stefan
Sauceda, Huziel E
Gastegger, Michael
Poltavsky, Igor
Schütt, Kristof T
Tkatchenko, Alexandre
Müller, Klaus-Robert
description In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
doi_str_mv 10.1021/acs.chemrev.0c01111
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568705459</sourcerecordid><originalsourceid>FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4Mobk7_AlEGXrx0y8uP1_YiyHAqTLzoOaRpunV07UzWgf-9GatDPZhLCPm873vvQ8gl0BFQBmNt_Mgs7MrZ7YgaCuEckT5IRiNMUnpM-pTSNGKIskfOvF-Gp5QsPiU9zmMqAZI-uXrRZlHWdjiz2tVlPR9OG2fscFraKvfn5KTQlbcX3T0g79OHt8lTNHt9fJ7czyItYr6JYkiEKACkQZuByKjIQ9dYxEkOglHgUhcascA8EzlqnoFMUSJmhnImYuQDcrfPXbfZyubG1hunK7V25Uq7T9XoUv3-qcuFmjdblfAUUhQh4LYLcM1Ha_1GrUpvbFXp2jatV0xSYCgwlQG9-YMum9bVYb1AYRLECJkGiu8p4xrvnS0OwwBVO_0q6FedftXpD1XXP_c41Hz7DsB4D-yqD33_i_wCKvaQuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568705459</pqid></control><display><type>article</type><title>Machine Learning Force Fields</title><source>ACS Publications</source><creator>Unke, Oliver T ; Chmiela, Stefan ; Sauceda, Huziel E ; Gastegger, Michael ; Poltavsky, Igor ; Schütt, Kristof T ; Tkatchenko, Alexandre ; Müller, Klaus-Robert</creator><creatorcontrib>Unke, Oliver T ; Chmiela, Stefan ; Sauceda, Huziel E ; Gastegger, Michael ; Poltavsky, Igor ; Schütt, Kristof T ; Tkatchenko, Alexandre ; Müller, Klaus-Robert</creatorcontrib><description>In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c01111</identifier><identifier>PMID: 33705118</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical bonds ; Computational chemistry ; Electronic structure ; Machine learning ; Potential energy ; Review</subject><ispartof>Chemical reviews, 2021-08, Vol.121 (16), p.10142-10186</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Aug 25, 2021</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</citedby><cites>FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</cites><orcidid>0000-0001-7503-406X ; 0000-0002-3861-7685 ; 0000-0001-6091-3408 ; 0000-0002-3188-7017 ; 0000-0001-8342-0964 ; 0000-0002-1012-4854</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c01111$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c01111$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33705118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Unke, Oliver T</creatorcontrib><creatorcontrib>Chmiela, Stefan</creatorcontrib><creatorcontrib>Sauceda, Huziel E</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Poltavsky, Igor</creatorcontrib><creatorcontrib>Schütt, Kristof T</creatorcontrib><creatorcontrib>Tkatchenko, Alexandre</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><title>Machine Learning Force Fields</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.</description><subject>Chemical bonds</subject><subject>Computational chemistry</subject><subject>Electronic structure</subject><subject>Machine learning</subject><subject>Potential energy</subject><subject>Review</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4Mobk7_AlEGXrx0y8uP1_YiyHAqTLzoOaRpunV07UzWgf-9GatDPZhLCPm873vvQ8gl0BFQBmNt_Mgs7MrZ7YgaCuEckT5IRiNMUnpM-pTSNGKIskfOvF-Gp5QsPiU9zmMqAZI-uXrRZlHWdjiz2tVlPR9OG2fscFraKvfn5KTQlbcX3T0g79OHt8lTNHt9fJ7czyItYr6JYkiEKACkQZuByKjIQ9dYxEkOglHgUhcascA8EzlqnoFMUSJmhnImYuQDcrfPXbfZyubG1hunK7V25Uq7T9XoUv3-qcuFmjdblfAUUhQh4LYLcM1Ha_1GrUpvbFXp2jatV0xSYCgwlQG9-YMum9bVYb1AYRLECJkGiu8p4xrvnS0OwwBVO_0q6FedftXpD1XXP_c41Hz7DsB4D-yqD33_i_wCKvaQuw</recordid><startdate>20210825</startdate><enddate>20210825</enddate><creator>Unke, Oliver T</creator><creator>Chmiela, Stefan</creator><creator>Sauceda, Huziel E</creator><creator>Gastegger, Michael</creator><creator>Poltavsky, Igor</creator><creator>Schütt, Kristof T</creator><creator>Tkatchenko, Alexandre</creator><creator>Müller, Klaus-Robert</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7503-406X</orcidid><orcidid>https://orcid.org/0000-0002-3861-7685</orcidid><orcidid>https://orcid.org/0000-0001-6091-3408</orcidid><orcidid>https://orcid.org/0000-0002-3188-7017</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0002-1012-4854</orcidid></search><sort><creationdate>20210825</creationdate><title>Machine Learning Force Fields</title><author>Unke, Oliver T ; Chmiela, Stefan ; Sauceda, Huziel E ; Gastegger, Michael ; Poltavsky, Igor ; Schütt, Kristof T ; Tkatchenko, Alexandre ; Müller, Klaus-Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a473t-71844f115c6eb14b04d2667478d1420135afa66f6db4d6a3b1596566bc0324763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical bonds</topic><topic>Computational chemistry</topic><topic>Electronic structure</topic><topic>Machine learning</topic><topic>Potential energy</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unke, Oliver T</creatorcontrib><creatorcontrib>Chmiela, Stefan</creatorcontrib><creatorcontrib>Sauceda, Huziel E</creatorcontrib><creatorcontrib>Gastegger, Michael</creatorcontrib><creatorcontrib>Poltavsky, Igor</creatorcontrib><creatorcontrib>Schütt, Kristof T</creatorcontrib><creatorcontrib>Tkatchenko, Alexandre</creatorcontrib><creatorcontrib>Müller, Klaus-Robert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unke, Oliver T</au><au>Chmiela, Stefan</au><au>Sauceda, Huziel E</au><au>Gastegger, Michael</au><au>Poltavsky, Igor</au><au>Schütt, Kristof T</au><au>Tkatchenko, Alexandre</au><au>Müller, Klaus-Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Force Fields</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2021-08-25</date><risdate>2021</risdate><volume>121</volume><issue>16</issue><spage>10142</spage><epage>10186</epage><pages>10142-10186</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33705118</pmid><doi>10.1021/acs.chemrev.0c01111</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0001-7503-406X</orcidid><orcidid>https://orcid.org/0000-0002-3861-7685</orcidid><orcidid>https://orcid.org/0000-0001-6091-3408</orcidid><orcidid>https://orcid.org/0000-0002-3188-7017</orcidid><orcidid>https://orcid.org/0000-0001-8342-0964</orcidid><orcidid>https://orcid.org/0000-0002-1012-4854</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2021-08, Vol.121 (16), p.10142-10186
issn 0009-2665
1520-6890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391964
source ACS Publications
subjects Chemical bonds
Computational chemistry
Electronic structure
Machine learning
Potential energy
Review
title Machine Learning Force Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A48%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Force%20Fields&rft.jtitle=Chemical%20reviews&rft.au=Unke,%20Oliver%20T&rft.date=2021-08-25&rft.volume=121&rft.issue=16&rft.spage=10142&rft.epage=10186&rft.pages=10142-10186&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c01111&rft_dat=%3Cproquest_pubme%3E2568705459%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568705459&rft_id=info:pmid/33705118&rfr_iscdi=true