Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment
Current systemic treatment options for patients with adrenocortical carcinomas (ACCs) are far from being satisfactory. DNA damage/repair mechanisms, which involve, e.g., ataxia-telangiectasia-mutated (ATM) and ataxia-telangiectasia/Rad3-related (ATR) protein signaling or ribonucleotide reductase sub...
Gespeichert in:
Veröffentlicht in: | Cancers 2021-08, Vol.13 (16), p.4200 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 4200 |
container_title | Cancers |
container_volume | 13 |
creator | Bothou, Christina Sharma, Ashish Oo, Adrian Kim, Baek Perge, Pal Igaz, Peter Ronchi, Cristina L Shapiro, Igor Hantel, Constanze |
description | Current systemic treatment options for patients with adrenocortical carcinomas (ACCs) are far from being satisfactory. DNA damage/repair mechanisms, which involve, e.g., ataxia-telangiectasia-mutated (ATM) and ataxia-telangiectasia/Rad3-related (ATR) protein signaling or ribonucleotide reductase subunits M1/M2 (RRM1/RRM2)-encoded ribonucleotide reductase (RNR) activation, commonly contribute to drug resistance. Moreover, the regulation of RRM2b, the p53-induced alternative to RRM2, is of unclear importance for ACC. Upon extensive drug screening, including a large panel of chemotherapies and molecular targeted inhibitors, we provide strong evidence for the anti-tumoral efficacy of combined gemcitabine (G) and cisplatin (C) treatment against the adrenocortical cell lines NCI-H295R and MUC-1. However, accompanying induction of RRM1, RRM2, and RRM2b expression also indicated developing G resistance, a frequent side effect in clinical patient care. Interestingly, this effect was partially reversed upon addition of C. We confirmed our findings for RRM2 protein, RNR-dependent dATP levels, and modulations of related ATM/ATR signaling. Finally, we screened for complementing inhibitors of the DNA damage/repair system targeting RNR, Wee1, CHK1/2, ATR, and ATM. Notably, the combination of G, C, and the dual RRM1/RRM2 inhibitor COH29 resulted in previously unreached total cell killing. In summary, we provide evidence that RNR-modulating therapies might represent a new therapeutic option for ACC. |
doi_str_mv | 10.3390/cancers13164200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564777151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f832f39737dcf4fd3302a111e220bbc3ae52ca114dc488966214baf55668d8cd3</originalsourceid><addsrcrecordid>eNpdkc9rFTEQx4MottSevUnAi5dn82uzuxehPLQtVIVSzyE7mX0vJZvUJFvwvzeltdTOZYbMZ76T4UvIe84-SzmyE7ARMBcuuVaCsVfkULBebLQe1etn9QE5LuWGtZCS97p_Sw6kUnKUnTgk8Ue6w0AvYvG7fS3Ux5po3SP9ngLCGmymV7hrufoUaZrplZ9SXCFgqt5ha7oVqi3YJumpyxgTpFw92EC3NoOPabH0OqOtC8b6jryZbSh4_JiPyK9vX6-355vLn2cX29PLDSjB62YepJjl2MvewaxmJyUTlnOOQrBpAmmxE9AelAM1DKPWgqvJzl2n9eAGcPKIfHnQvV2nBR201dkGc5v9YvMfk6w3_3ei35tdujODHLnirAl8ehTI6feKpZrFF8AQbMS0FiPaKqaUFrqhH1-gN2nNsZ13T6m-73nHG3XyQEFOpWScnz7Dmbm307yws018eH7DE__PPPkXtweegQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564777151</pqid></control><display><type>article</type><title>Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bothou, Christina ; Sharma, Ashish ; Oo, Adrian ; Kim, Baek ; Perge, Pal ; Igaz, Peter ; Ronchi, Cristina L ; Shapiro, Igor ; Hantel, Constanze</creator><creatorcontrib>Bothou, Christina ; Sharma, Ashish ; Oo, Adrian ; Kim, Baek ; Perge, Pal ; Igaz, Peter ; Ronchi, Cristina L ; Shapiro, Igor ; Hantel, Constanze</creatorcontrib><description>Current systemic treatment options for patients with adrenocortical carcinomas (ACCs) are far from being satisfactory. DNA damage/repair mechanisms, which involve, e.g., ataxia-telangiectasia-mutated (ATM) and ataxia-telangiectasia/Rad3-related (ATR) protein signaling or ribonucleotide reductase subunits M1/M2 (RRM1/RRM2)-encoded ribonucleotide reductase (RNR) activation, commonly contribute to drug resistance. Moreover, the regulation of RRM2b, the p53-induced alternative to RRM2, is of unclear importance for ACC. Upon extensive drug screening, including a large panel of chemotherapies and molecular targeted inhibitors, we provide strong evidence for the anti-tumoral efficacy of combined gemcitabine (G) and cisplatin (C) treatment against the adrenocortical cell lines NCI-H295R and MUC-1. However, accompanying induction of RRM1, RRM2, and RRM2b expression also indicated developing G resistance, a frequent side effect in clinical patient care. Interestingly, this effect was partially reversed upon addition of C. We confirmed our findings for RRM2 protein, RNR-dependent dATP levels, and modulations of related ATM/ATR signaling. Finally, we screened for complementing inhibitors of the DNA damage/repair system targeting RNR, Wee1, CHK1/2, ATR, and ATM. Notably, the combination of G, C, and the dual RRM1/RRM2 inhibitor COH29 resulted in previously unreached total cell killing. In summary, we provide evidence that RNR-modulating therapies might represent a new therapeutic option for ACC.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers13164200</identifier><identifier>PMID: 34439352</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Ataxia ; Carcinoma ; CHK1 protein ; Cisplatin ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA repair ; Doxorubicin ; Drug resistance ; Drug screening ; Enzymes ; Etoposide ; Experiments ; Gemcitabine ; Growth factors ; Insulin-like growth factors ; Kinases ; Metastasis ; p53 Protein ; Patients ; Reductase ; Ribonucleotide reductase ; Tumors ; Wnt protein</subject><ispartof>Cancers, 2021-08, Vol.13 (16), p.4200</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f832f39737dcf4fd3302a111e220bbc3ae52ca114dc488966214baf55668d8cd3</citedby><cites>FETCH-LOGICAL-c421t-f832f39737dcf4fd3302a111e220bbc3ae52ca114dc488966214baf55668d8cd3</cites><orcidid>0000-0003-3840-7140 ; 0000-0002-0722-7684 ; 0000-0001-5020-2071 ; 0000-0003-2192-554X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391410/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8391410/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34439352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bothou, Christina</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Oo, Adrian</creatorcontrib><creatorcontrib>Kim, Baek</creatorcontrib><creatorcontrib>Perge, Pal</creatorcontrib><creatorcontrib>Igaz, Peter</creatorcontrib><creatorcontrib>Ronchi, Cristina L</creatorcontrib><creatorcontrib>Shapiro, Igor</creatorcontrib><creatorcontrib>Hantel, Constanze</creatorcontrib><title>Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Current systemic treatment options for patients with adrenocortical carcinomas (ACCs) are far from being satisfactory. DNA damage/repair mechanisms, which involve, e.g., ataxia-telangiectasia-mutated (ATM) and ataxia-telangiectasia/Rad3-related (ATR) protein signaling or ribonucleotide reductase subunits M1/M2 (RRM1/RRM2)-encoded ribonucleotide reductase (RNR) activation, commonly contribute to drug resistance. Moreover, the regulation of RRM2b, the p53-induced alternative to RRM2, is of unclear importance for ACC. Upon extensive drug screening, including a large panel of chemotherapies and molecular targeted inhibitors, we provide strong evidence for the anti-tumoral efficacy of combined gemcitabine (G) and cisplatin (C) treatment against the adrenocortical cell lines NCI-H295R and MUC-1. However, accompanying induction of RRM1, RRM2, and RRM2b expression also indicated developing G resistance, a frequent side effect in clinical patient care. Interestingly, this effect was partially reversed upon addition of C. We confirmed our findings for RRM2 protein, RNR-dependent dATP levels, and modulations of related ATM/ATR signaling. Finally, we screened for complementing inhibitors of the DNA damage/repair system targeting RNR, Wee1, CHK1/2, ATR, and ATM. Notably, the combination of G, C, and the dual RRM1/RRM2 inhibitor COH29 resulted in previously unreached total cell killing. In summary, we provide evidence that RNR-modulating therapies might represent a new therapeutic option for ACC.</description><subject>Ataxia</subject><subject>Carcinoma</subject><subject>CHK1 protein</subject><subject>Cisplatin</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Doxorubicin</subject><subject>Drug resistance</subject><subject>Drug screening</subject><subject>Enzymes</subject><subject>Etoposide</subject><subject>Experiments</subject><subject>Gemcitabine</subject><subject>Growth factors</subject><subject>Insulin-like growth factors</subject><subject>Kinases</subject><subject>Metastasis</subject><subject>p53 Protein</subject><subject>Patients</subject><subject>Reductase</subject><subject>Ribonucleotide reductase</subject><subject>Tumors</subject><subject>Wnt protein</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc9rFTEQx4MottSevUnAi5dn82uzuxehPLQtVIVSzyE7mX0vJZvUJFvwvzeltdTOZYbMZ76T4UvIe84-SzmyE7ARMBcuuVaCsVfkULBebLQe1etn9QE5LuWGtZCS97p_Sw6kUnKUnTgk8Ue6w0AvYvG7fS3Ux5po3SP9ngLCGmymV7hrufoUaZrplZ9SXCFgqt5ha7oVqi3YJumpyxgTpFw92EC3NoOPabH0OqOtC8b6jryZbSh4_JiPyK9vX6-355vLn2cX29PLDSjB62YepJjl2MvewaxmJyUTlnOOQrBpAmmxE9AelAM1DKPWgqvJzl2n9eAGcPKIfHnQvV2nBR201dkGc5v9YvMfk6w3_3ei35tdujODHLnirAl8ehTI6feKpZrFF8AQbMS0FiPaKqaUFrqhH1-gN2nNsZ13T6m-73nHG3XyQEFOpWScnz7Dmbm307yws018eH7DE__PPPkXtweegQ</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Bothou, Christina</creator><creator>Sharma, Ashish</creator><creator>Oo, Adrian</creator><creator>Kim, Baek</creator><creator>Perge, Pal</creator><creator>Igaz, Peter</creator><creator>Ronchi, Cristina L</creator><creator>Shapiro, Igor</creator><creator>Hantel, Constanze</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3840-7140</orcidid><orcidid>https://orcid.org/0000-0002-0722-7684</orcidid><orcidid>https://orcid.org/0000-0001-5020-2071</orcidid><orcidid>https://orcid.org/0000-0003-2192-554X</orcidid></search><sort><creationdate>20210820</creationdate><title>Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment</title><author>Bothou, Christina ; Sharma, Ashish ; Oo, Adrian ; Kim, Baek ; Perge, Pal ; Igaz, Peter ; Ronchi, Cristina L ; Shapiro, Igor ; Hantel, Constanze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f832f39737dcf4fd3302a111e220bbc3ae52ca114dc488966214baf55668d8cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ataxia</topic><topic>Carcinoma</topic><topic>CHK1 protein</topic><topic>Cisplatin</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Doxorubicin</topic><topic>Drug resistance</topic><topic>Drug screening</topic><topic>Enzymes</topic><topic>Etoposide</topic><topic>Experiments</topic><topic>Gemcitabine</topic><topic>Growth factors</topic><topic>Insulin-like growth factors</topic><topic>Kinases</topic><topic>Metastasis</topic><topic>p53 Protein</topic><topic>Patients</topic><topic>Reductase</topic><topic>Ribonucleotide reductase</topic><topic>Tumors</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bothou, Christina</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Oo, Adrian</creatorcontrib><creatorcontrib>Kim, Baek</creatorcontrib><creatorcontrib>Perge, Pal</creatorcontrib><creatorcontrib>Igaz, Peter</creatorcontrib><creatorcontrib>Ronchi, Cristina L</creatorcontrib><creatorcontrib>Shapiro, Igor</creatorcontrib><creatorcontrib>Hantel, Constanze</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bothou, Christina</au><au>Sharma, Ashish</au><au>Oo, Adrian</au><au>Kim, Baek</au><au>Perge, Pal</au><au>Igaz, Peter</au><au>Ronchi, Cristina L</au><au>Shapiro, Igor</au><au>Hantel, Constanze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2021-08-20</date><risdate>2021</risdate><volume>13</volume><issue>16</issue><spage>4200</spage><pages>4200-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Current systemic treatment options for patients with adrenocortical carcinomas (ACCs) are far from being satisfactory. DNA damage/repair mechanisms, which involve, e.g., ataxia-telangiectasia-mutated (ATM) and ataxia-telangiectasia/Rad3-related (ATR) protein signaling or ribonucleotide reductase subunits M1/M2 (RRM1/RRM2)-encoded ribonucleotide reductase (RNR) activation, commonly contribute to drug resistance. Moreover, the regulation of RRM2b, the p53-induced alternative to RRM2, is of unclear importance for ACC. Upon extensive drug screening, including a large panel of chemotherapies and molecular targeted inhibitors, we provide strong evidence for the anti-tumoral efficacy of combined gemcitabine (G) and cisplatin (C) treatment against the adrenocortical cell lines NCI-H295R and MUC-1. However, accompanying induction of RRM1, RRM2, and RRM2b expression also indicated developing G resistance, a frequent side effect in clinical patient care. Interestingly, this effect was partially reversed upon addition of C. We confirmed our findings for RRM2 protein, RNR-dependent dATP levels, and modulations of related ATM/ATR signaling. Finally, we screened for complementing inhibitors of the DNA damage/repair system targeting RNR, Wee1, CHK1/2, ATR, and ATM. Notably, the combination of G, C, and the dual RRM1/RRM2 inhibitor COH29 resulted in previously unreached total cell killing. In summary, we provide evidence that RNR-modulating therapies might represent a new therapeutic option for ACC.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34439352</pmid><doi>10.3390/cancers13164200</doi><orcidid>https://orcid.org/0000-0003-3840-7140</orcidid><orcidid>https://orcid.org/0000-0002-0722-7684</orcidid><orcidid>https://orcid.org/0000-0001-5020-2071</orcidid><orcidid>https://orcid.org/0000-0003-2192-554X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2021-08, Vol.13 (16), p.4200 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391410 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Ataxia Carcinoma CHK1 protein Cisplatin Deoxyribonucleic acid DNA DNA damage DNA repair Doxorubicin Drug resistance Drug screening Enzymes Etoposide Experiments Gemcitabine Growth factors Insulin-like growth factors Kinases Metastasis p53 Protein Patients Reductase Ribonucleotide reductase Tumors Wnt protein |
title | Novel Insights into the Molecular Regulation of Ribonucleotide Reductase in Adrenocortical Carcinoma Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Insights%20into%20the%20Molecular%20Regulation%20of%20Ribonucleotide%20Reductase%20in%20Adrenocortical%20Carcinoma%20Treatment&rft.jtitle=Cancers&rft.au=Bothou,%20Christina&rft.date=2021-08-20&rft.volume=13&rft.issue=16&rft.spage=4200&rft.pages=4200-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers13164200&rft_dat=%3Cproquest_pubme%3E2564777151%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564777151&rft_id=info:pmid/34439352&rfr_iscdi=true |