Super-resolution Ultrasound Imaging
The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 μm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only pro...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2020-04, Vol.46 (4), p.865-891 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | 4 |
container_start_page | 865 |
container_title | Ultrasound in medicine & biology |
container_volume | 46 |
creator | Christensen-Jeffries, Kirsten Couture, Olivier Dayton, Paul A. Eldar, Yonina C. Hynynen, Kullervo Kiessling, Fabian O'Reilly, Meaghan Pinton, Gianmarco F. Schmitz, Georg Tang, Meng-Xing Tanter, Mickael van Sloun, Ruud J.G. |
description | The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 μm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only provide indirect observation at this scale. Inspired by optical microscopy, ultrasound localization microscopy has bypassed the classic compromise between penetration and resolution in ultrasonic imaging. By localization of individual injected microbubbles and tracking of their displacement with a subwavelength resolution, vascular and velocity maps can be produced at the scale of the micrometer. Super-resolution ultrasound has also been performed through signal fluctuations with the same type of contrast agents, or through switching on and off nano-sized phase-change contrast agents. These techniques are now being applied pre-clinically and clinically for imaging of the microvasculature of the brain, kidney, skin, tumors and lymph nodes. |
doi_str_mv | 10.1016/j.ultrasmedbio.2019.11.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8388823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562919315959</els_id><sourcerecordid>2344276966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-425dc25ba151ebef511c0de31976cf120489d0882e5fd038014ae2544b27d64f3</originalsourceid><addsrcrecordid>eNqNkVFP2zAUha1paHRsf2Gq2Mv2kOBrO068B6QKNkCqxMNA4s1K7JvWVRoXO6m0f49LAcGeeLJkf-ece30IOQaaAwV5ssrHbgh1XKNtnM8ZBZUD5BT4BzKBqlQZU3D3kUwop5AVkqlD8jnGFaW0lLz8RA45qJKrgk3I97_jBkMWMPpuHJzvp7eP3n7s7fRqXS9cv_hCDtq6i_j16Twit39-35xdZvPri6uz2TwzQoohE6ywhhVNDQVgg20BYKjFXZY0LTAqKmVpVTEsWkt5RUHUyAohGlZaKVp-RE73vpuxSbsZ7NMknd4Et67DP-1rp9--9G6pF36rK14lW54Mfu4Nlv_JLmdzvbujTJRSCbWFxP54Cgv-fsQ46LWLBruu7tGPUTMuBEuwlAn9tUdN8DEGbF-8gepdI3qlXzeid41oAJ0aSeJvr5d6kT5XkIDzPYDpa7cOg47GYW_QuoBm0Na79-Q8ACsro0M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344276966</pqid></control><display><type>article</type><title>Super-resolution Ultrasound Imaging</title><source>Access via ScienceDirect (Elsevier)</source><creator>Christensen-Jeffries, Kirsten ; Couture, Olivier ; Dayton, Paul A. ; Eldar, Yonina C. ; Hynynen, Kullervo ; Kiessling, Fabian ; O'Reilly, Meaghan ; Pinton, Gianmarco F. ; Schmitz, Georg ; Tang, Meng-Xing ; Tanter, Mickael ; van Sloun, Ruud J.G.</creator><creatorcontrib>Christensen-Jeffries, Kirsten ; Couture, Olivier ; Dayton, Paul A. ; Eldar, Yonina C. ; Hynynen, Kullervo ; Kiessling, Fabian ; O'Reilly, Meaghan ; Pinton, Gianmarco F. ; Schmitz, Georg ; Tang, Meng-Xing ; Tanter, Mickael ; van Sloun, Ruud J.G.</creatorcontrib><description>The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 μm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only provide indirect observation at this scale. Inspired by optical microscopy, ultrasound localization microscopy has bypassed the classic compromise between penetration and resolution in ultrasonic imaging. By localization of individual injected microbubbles and tracking of their displacement with a subwavelength resolution, vascular and velocity maps can be produced at the scale of the micrometer. Super-resolution ultrasound has also been performed through signal fluctuations with the same type of contrast agents, or through switching on and off nano-sized phase-change contrast agents. These techniques are now being applied pre-clinically and clinically for imaging of the microvasculature of the brain, kidney, skin, tumors and lymph nodes.</description><identifier>ISSN: 0301-5629</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2019.11.013</identifier><identifier>PMID: 31973952</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Bioengineering ; Brain ; Contrast agents ; Imaging ; Life Sciences ; Localization ; Microbubbles ; Microscopy ; Microvessels ; Super-resolution ; Tumor ; Ultrasound</subject><ispartof>Ultrasound in medicine & biology, 2020-04, Vol.46 (4), p.865-891</ispartof><rights>2020</rights><rights>Copyright © 2020. Published by Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c464t-425dc25ba151ebef511c0de31976cf120489d0882e5fd038014ae2544b27d64f3</cites><orcidid>0000-0001-7739-8051 ; 0000-0002-8683-1424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultrasmedbio.2019.11.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31973952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02476949$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Christensen-Jeffries, Kirsten</creatorcontrib><creatorcontrib>Couture, Olivier</creatorcontrib><creatorcontrib>Dayton, Paul A.</creatorcontrib><creatorcontrib>Eldar, Yonina C.</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><creatorcontrib>Kiessling, Fabian</creatorcontrib><creatorcontrib>O'Reilly, Meaghan</creatorcontrib><creatorcontrib>Pinton, Gianmarco F.</creatorcontrib><creatorcontrib>Schmitz, Georg</creatorcontrib><creatorcontrib>Tang, Meng-Xing</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><creatorcontrib>van Sloun, Ruud J.G.</creatorcontrib><title>Super-resolution Ultrasound Imaging</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 μm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only provide indirect observation at this scale. Inspired by optical microscopy, ultrasound localization microscopy has bypassed the classic compromise between penetration and resolution in ultrasonic imaging. By localization of individual injected microbubbles and tracking of their displacement with a subwavelength resolution, vascular and velocity maps can be produced at the scale of the micrometer. Super-resolution ultrasound has also been performed through signal fluctuations with the same type of contrast agents, or through switching on and off nano-sized phase-change contrast agents. These techniques are now being applied pre-clinically and clinically for imaging of the microvasculature of the brain, kidney, skin, tumors and lymph nodes.</description><subject>Bioengineering</subject><subject>Brain</subject><subject>Contrast agents</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Microbubbles</subject><subject>Microscopy</subject><subject>Microvessels</subject><subject>Super-resolution</subject><subject>Tumor</subject><subject>Ultrasound</subject><issn>0301-5629</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkVFP2zAUha1paHRsf2Gq2Mv2kOBrO068B6QKNkCqxMNA4s1K7JvWVRoXO6m0f49LAcGeeLJkf-ece30IOQaaAwV5ssrHbgh1XKNtnM8ZBZUD5BT4BzKBqlQZU3D3kUwop5AVkqlD8jnGFaW0lLz8RA45qJKrgk3I97_jBkMWMPpuHJzvp7eP3n7s7fRqXS9cv_hCDtq6i_j16Twit39-35xdZvPri6uz2TwzQoohE6ywhhVNDQVgg20BYKjFXZY0LTAqKmVpVTEsWkt5RUHUyAohGlZaKVp-RE73vpuxSbsZ7NMknd4Et67DP-1rp9--9G6pF36rK14lW54Mfu4Nlv_JLmdzvbujTJRSCbWFxP54Cgv-fsQ46LWLBruu7tGPUTMuBEuwlAn9tUdN8DEGbF-8gepdI3qlXzeid41oAJ0aSeJvr5d6kT5XkIDzPYDpa7cOg47GYW_QuoBm0Na79-Q8ACsro0M</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Christensen-Jeffries, Kirsten</creator><creator>Couture, Olivier</creator><creator>Dayton, Paul A.</creator><creator>Eldar, Yonina C.</creator><creator>Hynynen, Kullervo</creator><creator>Kiessling, Fabian</creator><creator>O'Reilly, Meaghan</creator><creator>Pinton, Gianmarco F.</creator><creator>Schmitz, Georg</creator><creator>Tang, Meng-Xing</creator><creator>Tanter, Mickael</creator><creator>van Sloun, Ruud J.G.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7739-8051</orcidid><orcidid>https://orcid.org/0000-0002-8683-1424</orcidid></search><sort><creationdate>20200401</creationdate><title>Super-resolution Ultrasound Imaging</title><author>Christensen-Jeffries, Kirsten ; Couture, Olivier ; Dayton, Paul A. ; Eldar, Yonina C. ; Hynynen, Kullervo ; Kiessling, Fabian ; O'Reilly, Meaghan ; Pinton, Gianmarco F. ; Schmitz, Georg ; Tang, Meng-Xing ; Tanter, Mickael ; van Sloun, Ruud J.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-425dc25ba151ebef511c0de31976cf120489d0882e5fd038014ae2544b27d64f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bioengineering</topic><topic>Brain</topic><topic>Contrast agents</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Microbubbles</topic><topic>Microscopy</topic><topic>Microvessels</topic><topic>Super-resolution</topic><topic>Tumor</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen-Jeffries, Kirsten</creatorcontrib><creatorcontrib>Couture, Olivier</creatorcontrib><creatorcontrib>Dayton, Paul A.</creatorcontrib><creatorcontrib>Eldar, Yonina C.</creatorcontrib><creatorcontrib>Hynynen, Kullervo</creatorcontrib><creatorcontrib>Kiessling, Fabian</creatorcontrib><creatorcontrib>O'Reilly, Meaghan</creatorcontrib><creatorcontrib>Pinton, Gianmarco F.</creatorcontrib><creatorcontrib>Schmitz, Georg</creatorcontrib><creatorcontrib>Tang, Meng-Xing</creatorcontrib><creatorcontrib>Tanter, Mickael</creatorcontrib><creatorcontrib>van Sloun, Ruud J.G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen-Jeffries, Kirsten</au><au>Couture, Olivier</au><au>Dayton, Paul A.</au><au>Eldar, Yonina C.</au><au>Hynynen, Kullervo</au><au>Kiessling, Fabian</au><au>O'Reilly, Meaghan</au><au>Pinton, Gianmarco F.</au><au>Schmitz, Georg</au><au>Tang, Meng-Xing</au><au>Tanter, Mickael</au><au>van Sloun, Ruud J.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-resolution Ultrasound Imaging</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>46</volume><issue>4</issue><spage>865</spage><epage>891</epage><pages>865-891</pages><issn>0301-5629</issn><eissn>1879-291X</eissn><abstract>The majority of exchanges of oxygen and nutrients are performed around vessels smaller than 100 μm, allowing cells to thrive everywhere in the body. Pathologies such as cancer, diabetes and arteriosclerosis can profoundly alter the microvasculature. Unfortunately, medical imaging modalities only provide indirect observation at this scale. Inspired by optical microscopy, ultrasound localization microscopy has bypassed the classic compromise between penetration and resolution in ultrasonic imaging. By localization of individual injected microbubbles and tracking of their displacement with a subwavelength resolution, vascular and velocity maps can be produced at the scale of the micrometer. Super-resolution ultrasound has also been performed through signal fluctuations with the same type of contrast agents, or through switching on and off nano-sized phase-change contrast agents. These techniques are now being applied pre-clinically and clinically for imaging of the microvasculature of the brain, kidney, skin, tumors and lymph nodes.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>31973952</pmid><doi>10.1016/j.ultrasmedbio.2019.11.013</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7739-8051</orcidid><orcidid>https://orcid.org/0000-0002-8683-1424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 2020-04, Vol.46 (4), p.865-891 |
issn | 0301-5629 1879-291X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8388823 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bioengineering Brain Contrast agents Imaging Life Sciences Localization Microbubbles Microscopy Microvessels Super-resolution Tumor Ultrasound |
title | Super-resolution Ultrasound Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-resolution%20Ultrasound%20Imaging&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Christensen-Jeffries,%20Kirsten&rft.date=2020-04-01&rft.volume=46&rft.issue=4&rft.spage=865&rft.epage=891&rft.pages=865-891&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2019.11.013&rft_dat=%3Cproquest_pubme%3E2344276966%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344276966&rft_id=info:pmid/31973952&rft_els_id=S0301562919315959&rfr_iscdi=true |