Research on Location Selection Strategy for Airlines Spare Parts Central Warehouse Based on METRIC

With the increased demands of airlines, it is important to study the location selection strategy for spare parts central warehouse in order to improve the allocation capacity of spare parts maintenance resources and reduce the operating costs of airlines. Based on the M/M/s/∞/∞ multiservice desk mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2021, Vol.2021 (1), p.4737700-4737700
Hauptverfasser: Wang, Rui, Qin, Yicong, Sun, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4737700
container_issue 1
container_start_page 4737700
container_title Computational intelligence and neuroscience
container_volume 2021
creator Wang, Rui
Qin, Yicong
Sun, Hui
description With the increased demands of airlines, it is important to study the location selection strategy for spare parts central warehouse in order to improve the allocation capacity of spare parts maintenance resources and reduce the operating costs of airlines. Based on the M/M/s/∞/∞ multiservice desk model and Multi-Echelon Technique for Recoverable Item Control (METRIC) theory, this paper proposes a spare parts supply strategy based on the spare parts pool network and establishes a location selection model for spare parts central warehouse. The particle swarm optimization (PSO) algorithm is used to iteratively optimize the location for spare parts central warehouse and adjust the location area of the central warehouse combining transportation facilities and geographical environment factors. Finally, the paper compares the operating results for multiple airlines in pooling and off-pooling states and verifies the effectiveness of the spare parts supply model and the advantages of cost control for airlines.
doi_str_mv 10.1155/2021/4737700
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8387176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A696872378</galeid><sourcerecordid>A696872378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-cf09396f28af1e90e2ad4b782f45e5052e25b3316da769b6a55563e2b0e3eb3d3</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoadK0t3wAQS6FdBv98Uj2JbBZ0jawpSVJyVHI8nhXwWttJG9Lvn1lvKSkh16kx-jHmxk9Qk44-8Q5wLlggp8XWmrN2AE54qrUMxBavnrWCg7J25QeGAMNTLwhh7IoQFWVPCL1DSa00a1p6OkyODv4LG6xQzepIdoBV0-0DZHOfex8j4nebm1E-sPGIdEF9pnp6H0urcMuIb20CZvR79vV3c314h153dou4fv9fUx-fr66W3ydLb9_uV7MlzNXgBxmrmWVrFQrSttyrBgK2xS1LkVbAAIDgQJqKblqrFZVrSwAKImiZiixlo08JheT73ZXb7Bx01xmG_3GxicTrDcvX3q_Nqvwy5Sy1FyrbPBhbxDD4w7TYDY-Oew622NezAhQSiiePzyjp_-gD2EX-7zeSEGVDyH_UivbofF9G3JfN5qauapyOELqMlMfJ8rFkFLE9nlkzswYsRkjNvuIM3424WvfN_a3_z_9BzQGorI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565925623</pqid></control><display><type>article</type><title>Research on Location Selection Strategy for Airlines Spare Parts Central Warehouse Based on METRIC</title><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Rui ; Qin, Yicong ; Sun, Hui</creator><contributor>Bai, Yu-Ting ; Yu-Ting Bai</contributor><creatorcontrib>Wang, Rui ; Qin, Yicong ; Sun, Hui ; Bai, Yu-Ting ; Yu-Ting Bai</creatorcontrib><description>With the increased demands of airlines, it is important to study the location selection strategy for spare parts central warehouse in order to improve the allocation capacity of spare parts maintenance resources and reduce the operating costs of airlines. Based on the M/M/s/∞/∞ multiservice desk model and Multi-Echelon Technique for Recoverable Item Control (METRIC) theory, this paper proposes a spare parts supply strategy based on the spare parts pool network and establishes a location selection model for spare parts central warehouse. The particle swarm optimization (PSO) algorithm is used to iteratively optimize the location for spare parts central warehouse and adjust the location area of the central warehouse combining transportation facilities and geographical environment factors. Finally, the paper compares the operating results for multiple airlines in pooling and off-pooling states and verifies the effectiveness of the spare parts supply model and the advantages of cost control for airlines.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2021/4737700</identifier><identifier>PMID: 34456993</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Aging ; Airlines ; Algorithms ; Analysis ; Aviation ; Cost control ; Logistics ; Mathematical optimization ; Operating costs ; Optimization ; Particle swarm optimization ; Preventive maintenance ; Queuing theory ; Site selection ; Spare parts ; Turnover ; Warehouse stores ; Warehouses</subject><ispartof>Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.4737700-4737700</ispartof><rights>Copyright © 2021 Rui Wang et al.</rights><rights>COPYRIGHT 2021 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2021 Rui Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Rui Wang et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-cf09396f28af1e90e2ad4b782f45e5052e25b3316da769b6a55563e2b0e3eb3d3</citedby><cites>FETCH-LOGICAL-c453t-cf09396f28af1e90e2ad4b782f45e5052e25b3316da769b6a55563e2b0e3eb3d3</cites><orcidid>0000-0001-7199-9059 ; 0000-0002-2339-9304 ; 0000-0003-4452-6795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387176/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8387176/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4022,27922,27923,27924,53790,53792</link.rule.ids></links><search><contributor>Bai, Yu-Ting</contributor><contributor>Yu-Ting Bai</contributor><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Qin, Yicong</creatorcontrib><creatorcontrib>Sun, Hui</creatorcontrib><title>Research on Location Selection Strategy for Airlines Spare Parts Central Warehouse Based on METRIC</title><title>Computational intelligence and neuroscience</title><description>With the increased demands of airlines, it is important to study the location selection strategy for spare parts central warehouse in order to improve the allocation capacity of spare parts maintenance resources and reduce the operating costs of airlines. Based on the M/M/s/∞/∞ multiservice desk model and Multi-Echelon Technique for Recoverable Item Control (METRIC) theory, this paper proposes a spare parts supply strategy based on the spare parts pool network and establishes a location selection model for spare parts central warehouse. The particle swarm optimization (PSO) algorithm is used to iteratively optimize the location for spare parts central warehouse and adjust the location area of the central warehouse combining transportation facilities and geographical environment factors. Finally, the paper compares the operating results for multiple airlines in pooling and off-pooling states and verifies the effectiveness of the spare parts supply model and the advantages of cost control for airlines.</description><subject>Aging</subject><subject>Airlines</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Aviation</subject><subject>Cost control</subject><subject>Logistics</subject><subject>Mathematical optimization</subject><subject>Operating costs</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Preventive maintenance</subject><subject>Queuing theory</subject><subject>Site selection</subject><subject>Spare parts</subject><subject>Turnover</subject><subject>Warehouse stores</subject><subject>Warehouses</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9r3DAQxUVoadK0t3wAQS6FdBv98Uj2JbBZ0jawpSVJyVHI8nhXwWttJG9Lvn1lvKSkh16kx-jHmxk9Qk44-8Q5wLlggp8XWmrN2AE54qrUMxBavnrWCg7J25QeGAMNTLwhh7IoQFWVPCL1DSa00a1p6OkyODv4LG6xQzepIdoBV0-0DZHOfex8j4nebm1E-sPGIdEF9pnp6H0urcMuIb20CZvR79vV3c314h153dou4fv9fUx-fr66W3ydLb9_uV7MlzNXgBxmrmWVrFQrSttyrBgK2xS1LkVbAAIDgQJqKblqrFZVrSwAKImiZiixlo08JheT73ZXb7Bx01xmG_3GxicTrDcvX3q_Nqvwy5Sy1FyrbPBhbxDD4w7TYDY-Oew622NezAhQSiiePzyjp_-gD2EX-7zeSEGVDyH_UivbofF9G3JfN5qauapyOELqMlMfJ8rFkFLE9nlkzswYsRkjNvuIM3424WvfN_a3_z_9BzQGorI</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Wang, Rui</creator><creator>Qin, Yicong</creator><creator>Sun, Hui</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7199-9059</orcidid><orcidid>https://orcid.org/0000-0002-2339-9304</orcidid><orcidid>https://orcid.org/0000-0003-4452-6795</orcidid></search><sort><creationdate>2021</creationdate><title>Research on Location Selection Strategy for Airlines Spare Parts Central Warehouse Based on METRIC</title><author>Wang, Rui ; Qin, Yicong ; Sun, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-cf09396f28af1e90e2ad4b782f45e5052e25b3316da769b6a55563e2b0e3eb3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aging</topic><topic>Airlines</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Aviation</topic><topic>Cost control</topic><topic>Logistics</topic><topic>Mathematical optimization</topic><topic>Operating costs</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Preventive maintenance</topic><topic>Queuing theory</topic><topic>Site selection</topic><topic>Spare parts</topic><topic>Turnover</topic><topic>Warehouse stores</topic><topic>Warehouses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Qin, Yicong</creatorcontrib><creatorcontrib>Sun, Hui</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rui</au><au>Qin, Yicong</au><au>Sun, Hui</au><au>Bai, Yu-Ting</au><au>Yu-Ting Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Location Selection Strategy for Airlines Spare Parts Central Warehouse Based on METRIC</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>4737700</spage><epage>4737700</epage><pages>4737700-4737700</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>With the increased demands of airlines, it is important to study the location selection strategy for spare parts central warehouse in order to improve the allocation capacity of spare parts maintenance resources and reduce the operating costs of airlines. Based on the M/M/s/∞/∞ multiservice desk model and Multi-Echelon Technique for Recoverable Item Control (METRIC) theory, this paper proposes a spare parts supply strategy based on the spare parts pool network and establishes a location selection model for spare parts central warehouse. The particle swarm optimization (PSO) algorithm is used to iteratively optimize the location for spare parts central warehouse and adjust the location area of the central warehouse combining transportation facilities and geographical environment factors. Finally, the paper compares the operating results for multiple airlines in pooling and off-pooling states and verifies the effectiveness of the spare parts supply model and the advantages of cost control for airlines.</abstract><cop>New York</cop><pub>Hindawi</pub><pmid>34456993</pmid><doi>10.1155/2021/4737700</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7199-9059</orcidid><orcidid>https://orcid.org/0000-0002-2339-9304</orcidid><orcidid>https://orcid.org/0000-0003-4452-6795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2021, Vol.2021 (1), p.4737700-4737700
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8387176
source PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Aging
Airlines
Algorithms
Analysis
Aviation
Cost control
Logistics
Mathematical optimization
Operating costs
Optimization
Particle swarm optimization
Preventive maintenance
Queuing theory
Site selection
Spare parts
Turnover
Warehouse stores
Warehouses
title Research on Location Selection Strategy for Airlines Spare Parts Central Warehouse Based on METRIC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Location%20Selection%20Strategy%20for%20Airlines%20Spare%20Parts%20Central%20Warehouse%20Based%20on%20METRIC&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Wang,%20Rui&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=4737700&rft.epage=4737700&rft.pages=4737700-4737700&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2021/4737700&rft_dat=%3Cgale_pubme%3EA696872378%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565925623&rft_id=info:pmid/34456993&rft_galeid=A696872378&rfr_iscdi=true