Silver nanoparticles–chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition
This study aimed to evaluate the effectiveness of silver nanoparticles–chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and a...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2021-08, Vol.23 (8), p.196-196, Article 196 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 8 |
container_start_page | 196 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 23 |
creator | dos Santos, Eduarda Melquiades Pirette Martins, Carla Castelo Branco de Oliveira Santos, João Victor da Silva, Wagner Roberto Cirilo Silva, Sidicleia Bezerra Costa Pelagio-Flores, Miguel Angel Galembeck, André Cavalcanti, Isabella Macário Ferro |
description | This study aimed to evaluate the effectiveness of silver nanoparticles–chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and ascorbic acid as reducing agents and characterized by UV–Vis absorption spectra, scanning transmission electron microscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the AgNPs were determined according to the Clinical and Laboratory Standards Institute (CLSI) against clinical isolates multidrug-resistant and strains of the American Type Culture Collection (ATCC). An assay was performed to determine the MICs during 20 successive bacteria exposures to AgNPs to investigate whether AgNPs induce tolerance in bacteria. The antibiofilm activities of AgNPs were also evaluated by determining the minimum biofilm inhibitory concentration (MBIC). The spherical AgNPs present diameters ranging from 9.3 to 62.4 nm, and some samples also have rod-, oval-, and triangle-shaped nanoparticles. The MIC and MBC values ranged from 0.8 to 25 μg/mL and 3.1 to 50 μg/mL, respectively. Smaller and spherical AgNPs exhibited the highest activity, but all the AgNPs developed in this study exhibit bactericidal activity. There was no significant MIC increase after 20 passages to the AgNPs. Regarding the antibiofilm activity, MBICs ranged from 12.5 to 50 μg/mL. Again, smaller and spherical nanoparticles presented the best results with phenotypic inhibition of production of slime or exopolysaccharide (EPS) matrix. Thus, it was concluded that AgNPs have a promising potential against resistant bacteria and bacteria that grow on biofilms without inducing tolerance. |
doi_str_mv | 10.1007/s11051-021-05314-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8383018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566261308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-3634af6a33c122486fa6c5b89711aa7024b3100cd540ac885d9188b0b949adaa3</originalsourceid><addsrcrecordid>eNp9kcuKFTEQhoMozjj6Ai4k4MZNa26dTrsQZPAGAy5UcBeq0-lzauhO2iTnwOx8B9_QJzHHM46XhYuQwP_VX6n6CXnI2VPOWPcsc85a3jBRTyu5avgtcsrbTjSm159v17c0pmGdVifkXs6XjHEtenGXnEilWq15e0rWDzjvfaIBQlwhFXSzz9-_fnNbLDFDoC4ua8xYfKbgCu6xXFHYAIZcaPIZc4FQ6FA1nxCe0xJnnyA4TyGMdMA44bxQDFscsGAM98mdCebsH1zfZ-TT61cfz982F-_fvDt_edE41anSSC0VTBqkdFwIZfQE2rWD6TvOATom1CDrEtzYKgbOmHbsuTEDG3rVwwggz8iLo--6GxY_Oh9KgtmuCRdIVzYC2r-VgFu7iXtrpJGMm2rw5NogxS87n4tdMDs_zxB83GUr6gaF5pId0Mf_oJdxl0Id70DJXkopVKXEkXIp5pz8dPMZzuwhUHsM1NZA7c9ALa9Fj_4c46bkV4IVkEcgVylsfPrd-z-2PwAVaK9-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563933324</pqid></control><display><type>article</type><title>Silver nanoparticles–chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition</title><source>SpringerLink Journals</source><creator>dos Santos, Eduarda Melquiades Pirette ; Martins, Carla Castelo Branco ; de Oliveira Santos, João Victor ; da Silva, Wagner Roberto Cirilo ; Silva, Sidicleia Bezerra Costa ; Pelagio-Flores, Miguel Angel ; Galembeck, André ; Cavalcanti, Isabella Macário Ferro</creator><creatorcontrib>dos Santos, Eduarda Melquiades Pirette ; Martins, Carla Castelo Branco ; de Oliveira Santos, João Victor ; da Silva, Wagner Roberto Cirilo ; Silva, Sidicleia Bezerra Costa ; Pelagio-Flores, Miguel Angel ; Galembeck, André ; Cavalcanti, Isabella Macário Ferro</creatorcontrib><description>This study aimed to evaluate the effectiveness of silver nanoparticles–chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and ascorbic acid as reducing agents and characterized by UV–Vis absorption spectra, scanning transmission electron microscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the AgNPs were determined according to the Clinical and Laboratory Standards Institute (CLSI) against clinical isolates multidrug-resistant and strains of the American Type Culture Collection (ATCC). An assay was performed to determine the MICs during 20 successive bacteria exposures to AgNPs to investigate whether AgNPs induce tolerance in bacteria. The antibiofilm activities of AgNPs were also evaluated by determining the minimum biofilm inhibitory concentration (MBIC). The spherical AgNPs present diameters ranging from 9.3 to 62.4 nm, and some samples also have rod-, oval-, and triangle-shaped nanoparticles. The MIC and MBC values ranged from 0.8 to 25 μg/mL and 3.1 to 50 μg/mL, respectively. Smaller and spherical AgNPs exhibited the highest activity, but all the AgNPs developed in this study exhibit bactericidal activity. There was no significant MIC increase after 20 passages to the AgNPs. Regarding the antibiofilm activity, MBICs ranged from 12.5 to 50 μg/mL. Again, smaller and spherical nanoparticles presented the best results with phenotypic inhibition of production of slime or exopolysaccharide (EPS) matrix. Thus, it was concluded that AgNPs have a promising potential against resistant bacteria and bacteria that grow on biofilms without inducing tolerance.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-021-05314-1</identifier><identifier>PMID: 34456615</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Absorption spectra ; American Type Culture Collection ; Ascorbic acid ; Bacteria ; Bactericidal activity ; Biofilms ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chitosan ; Clinical isolates ; Exopolysaccharides ; Inorganic Chemistry ; Lasers ; Materials Science ; Minimum inhibitory concentration ; Morphology ; Multidrug resistance ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Particulate composites ; Photonics ; Physical Chemistry ; Reducing agents ; Research Paper ; Scanning transmission electron microscopy ; Silver ; Slime ; Transmission electron microscopy</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2021-08, Vol.23 (8), p.196-196, Article 196</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-3634af6a33c122486fa6c5b89711aa7024b3100cd540ac885d9188b0b949adaa3</citedby><cites>FETCH-LOGICAL-c474t-3634af6a33c122486fa6c5b89711aa7024b3100cd540ac885d9188b0b949adaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-021-05314-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-021-05314-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34456615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>dos Santos, Eduarda Melquiades Pirette</creatorcontrib><creatorcontrib>Martins, Carla Castelo Branco</creatorcontrib><creatorcontrib>de Oliveira Santos, João Victor</creatorcontrib><creatorcontrib>da Silva, Wagner Roberto Cirilo</creatorcontrib><creatorcontrib>Silva, Sidicleia Bezerra Costa</creatorcontrib><creatorcontrib>Pelagio-Flores, Miguel Angel</creatorcontrib><creatorcontrib>Galembeck, André</creatorcontrib><creatorcontrib>Cavalcanti, Isabella Macário Ferro</creatorcontrib><title>Silver nanoparticles–chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><addtitle>J Nanopart Res</addtitle><description>This study aimed to evaluate the effectiveness of silver nanoparticles–chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and ascorbic acid as reducing agents and characterized by UV–Vis absorption spectra, scanning transmission electron microscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the AgNPs were determined according to the Clinical and Laboratory Standards Institute (CLSI) against clinical isolates multidrug-resistant and strains of the American Type Culture Collection (ATCC). An assay was performed to determine the MICs during 20 successive bacteria exposures to AgNPs to investigate whether AgNPs induce tolerance in bacteria. The antibiofilm activities of AgNPs were also evaluated by determining the minimum biofilm inhibitory concentration (MBIC). The spherical AgNPs present diameters ranging from 9.3 to 62.4 nm, and some samples also have rod-, oval-, and triangle-shaped nanoparticles. The MIC and MBC values ranged from 0.8 to 25 μg/mL and 3.1 to 50 μg/mL, respectively. Smaller and spherical AgNPs exhibited the highest activity, but all the AgNPs developed in this study exhibit bactericidal activity. There was no significant MIC increase after 20 passages to the AgNPs. Regarding the antibiofilm activity, MBICs ranged from 12.5 to 50 μg/mL. Again, smaller and spherical nanoparticles presented the best results with phenotypic inhibition of production of slime or exopolysaccharide (EPS) matrix. Thus, it was concluded that AgNPs have a promising potential against resistant bacteria and bacteria that grow on biofilms without inducing tolerance.</description><subject>Absorption spectra</subject><subject>American Type Culture Collection</subject><subject>Ascorbic acid</subject><subject>Bacteria</subject><subject>Bactericidal activity</subject><subject>Biofilms</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Clinical isolates</subject><subject>Exopolysaccharides</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Minimum inhibitory concentration</subject><subject>Morphology</subject><subject>Multidrug resistance</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Particulate composites</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Reducing agents</subject><subject>Research Paper</subject><subject>Scanning transmission electron microscopy</subject><subject>Silver</subject><subject>Slime</subject><subject>Transmission electron microscopy</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcuKFTEQhoMozjj6Ai4k4MZNa26dTrsQZPAGAy5UcBeq0-lzauhO2iTnwOx8B9_QJzHHM46XhYuQwP_VX6n6CXnI2VPOWPcsc85a3jBRTyu5avgtcsrbTjSm159v17c0pmGdVifkXs6XjHEtenGXnEilWq15e0rWDzjvfaIBQlwhFXSzz9-_fnNbLDFDoC4ua8xYfKbgCu6xXFHYAIZcaPIZc4FQ6FA1nxCe0xJnnyA4TyGMdMA44bxQDFscsGAM98mdCebsH1zfZ-TT61cfz982F-_fvDt_edE41anSSC0VTBqkdFwIZfQE2rWD6TvOATom1CDrEtzYKgbOmHbsuTEDG3rVwwggz8iLo--6GxY_Oh9KgtmuCRdIVzYC2r-VgFu7iXtrpJGMm2rw5NogxS87n4tdMDs_zxB83GUr6gaF5pId0Mf_oJdxl0Id70DJXkopVKXEkXIp5pz8dPMZzuwhUHsM1NZA7c9ALa9Fj_4c46bkV4IVkEcgVylsfPrd-z-2PwAVaK9-</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>dos Santos, Eduarda Melquiades Pirette</creator><creator>Martins, Carla Castelo Branco</creator><creator>de Oliveira Santos, João Victor</creator><creator>da Silva, Wagner Roberto Cirilo</creator><creator>Silva, Sidicleia Bezerra Costa</creator><creator>Pelagio-Flores, Miguel Angel</creator><creator>Galembeck, André</creator><creator>Cavalcanti, Isabella Macário Ferro</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210801</creationdate><title>Silver nanoparticles–chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition</title><author>dos Santos, Eduarda Melquiades Pirette ; Martins, Carla Castelo Branco ; de Oliveira Santos, João Victor ; da Silva, Wagner Roberto Cirilo ; Silva, Sidicleia Bezerra Costa ; Pelagio-Flores, Miguel Angel ; Galembeck, André ; Cavalcanti, Isabella Macário Ferro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-3634af6a33c122486fa6c5b89711aa7024b3100cd540ac885d9188b0b949adaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption spectra</topic><topic>American Type Culture Collection</topic><topic>Ascorbic acid</topic><topic>Bacteria</topic><topic>Bactericidal activity</topic><topic>Biofilms</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Clinical isolates</topic><topic>Exopolysaccharides</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Minimum inhibitory concentration</topic><topic>Morphology</topic><topic>Multidrug resistance</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Particulate composites</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Reducing agents</topic><topic>Research Paper</topic><topic>Scanning transmission electron microscopy</topic><topic>Silver</topic><topic>Slime</topic><topic>Transmission electron microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Eduarda Melquiades Pirette</creatorcontrib><creatorcontrib>Martins, Carla Castelo Branco</creatorcontrib><creatorcontrib>de Oliveira Santos, João Victor</creatorcontrib><creatorcontrib>da Silva, Wagner Roberto Cirilo</creatorcontrib><creatorcontrib>Silva, Sidicleia Bezerra Costa</creatorcontrib><creatorcontrib>Pelagio-Flores, Miguel Angel</creatorcontrib><creatorcontrib>Galembeck, André</creatorcontrib><creatorcontrib>Cavalcanti, Isabella Macário Ferro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Eduarda Melquiades Pirette</au><au>Martins, Carla Castelo Branco</au><au>de Oliveira Santos, João Victor</au><au>da Silva, Wagner Roberto Cirilo</au><au>Silva, Sidicleia Bezerra Costa</au><au>Pelagio-Flores, Miguel Angel</au><au>Galembeck, André</au><au>Cavalcanti, Isabella Macário Ferro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver nanoparticles–chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><addtitle>J Nanopart Res</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>23</volume><issue>8</issue><spage>196</spage><epage>196</epage><pages>196-196</pages><artnum>196</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>This study aimed to evaluate the effectiveness of silver nanoparticles–chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and ascorbic acid as reducing agents and characterized by UV–Vis absorption spectra, scanning transmission electron microscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the AgNPs were determined according to the Clinical and Laboratory Standards Institute (CLSI) against clinical isolates multidrug-resistant and strains of the American Type Culture Collection (ATCC). An assay was performed to determine the MICs during 20 successive bacteria exposures to AgNPs to investigate whether AgNPs induce tolerance in bacteria. The antibiofilm activities of AgNPs were also evaluated by determining the minimum biofilm inhibitory concentration (MBIC). The spherical AgNPs present diameters ranging from 9.3 to 62.4 nm, and some samples also have rod-, oval-, and triangle-shaped nanoparticles. The MIC and MBC values ranged from 0.8 to 25 μg/mL and 3.1 to 50 μg/mL, respectively. Smaller and spherical AgNPs exhibited the highest activity, but all the AgNPs developed in this study exhibit bactericidal activity. There was no significant MIC increase after 20 passages to the AgNPs. Regarding the antibiofilm activity, MBICs ranged from 12.5 to 50 μg/mL. Again, smaller and spherical nanoparticles presented the best results with phenotypic inhibition of production of slime or exopolysaccharide (EPS) matrix. Thus, it was concluded that AgNPs have a promising potential against resistant bacteria and bacteria that grow on biofilms without inducing tolerance.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>34456615</pmid><doi>10.1007/s11051-021-05314-1</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2021-08, Vol.23 (8), p.196-196, Article 196 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8383018 |
source | SpringerLink Journals |
subjects | Absorption spectra American Type Culture Collection Ascorbic acid Bacteria Bactericidal activity Biofilms Characterization and Evaluation of Materials Chemistry and Materials Science Chitosan Clinical isolates Exopolysaccharides Inorganic Chemistry Lasers Materials Science Minimum inhibitory concentration Morphology Multidrug resistance Nanoparticles Nanotechnology Optical Devices Optics Particulate composites Photonics Physical Chemistry Reducing agents Research Paper Scanning transmission electron microscopy Silver Slime Transmission electron microscopy |
title | Silver nanoparticles–chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A51%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20nanoparticles%E2%80%93chitosan%20composites%20activity%20against%20resistant%20bacteria:%20tolerance%20and%20biofilm%20inhibition&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=dos%20Santos,%20Eduarda%20Melquiades%20Pirette&rft.date=2021-08-01&rft.volume=23&rft.issue=8&rft.spage=196&rft.epage=196&rft.pages=196-196&rft.artnum=196&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-021-05314-1&rft_dat=%3Cproquest_pubme%3E2566261308%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563933324&rft_id=info:pmid/34456615&rfr_iscdi=true |