Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes
Abstract How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome struc...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2021-09, Vol.38 (9), p.3581-3592 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3592 |
---|---|
container_issue | 9 |
container_start_page | 3581 |
container_title | Molecular biology and evolution |
container_volume | 38 |
creator | McElroy, Kyle E Müller, Stefan Lamatsch, Dunja K Bankers, Laura Fields, Peter D Jalinsky, Joseph R Sharbrough, Joel Boore, Jeffrey L Logsdon, John M Neiman, Maurine |
description | Abstract
How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction. |
doi_str_mv | 10.1093/molbev/msab121 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775440961</galeid><oup_id>10.1093/molbev/msab121</oup_id><sourcerecordid>A775440961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EouWxMiKvDC1-JbEXpKgCilRAqsps2a5TDEkcxSnQf4-hpZQJefDV9XfO9dUB4AyjIUaCXla-1PbtsgpKY4L3QB8nNBvgDIv9nboHjkJ4QQgzlqaHoEcp5wknqA9kHuzHUpWuW8E8BG-c6uwcvrvuGd6r9jXWt7b2lTPw-qNRdXC-hr6AM1XPbVWu4NQ29lvSTh9yGLtw7ELna_uls-EEHBSqDPZ0cx-Dp5vr2Wg8mDze3o3yycCwlHYDrRMjFNEJFYIViKZzrm2hKWMCIW4VZdQQoyMsiMGKoMgobAjPeJIVaUqPwdXat1nqys6NrbtWlbJpXaXalfTKyb8vtXuWC_8mOeVEEBQNhmuDhSqtdHXhI2biiWs6E_cpXOznWZYwhkSKfwWm9SG0ttgOw0h-ZSPX2chNNlFwvvvFLf4TRgQu1oBfNv-ZfQJPeJyo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McElroy, Kyle E ; Müller, Stefan ; Lamatsch, Dunja K ; Bankers, Laura ; Fields, Peter D ; Jalinsky, Joseph R ; Sharbrough, Joel ; Boore, Jeffrey L ; Logsdon, John M ; Neiman, Maurine</creator><contributor>Arkhipova, Irina</contributor><creatorcontrib>McElroy, Kyle E ; Müller, Stefan ; Lamatsch, Dunja K ; Bankers, Laura ; Fields, Peter D ; Jalinsky, Joseph R ; Sharbrough, Joel ; Boore, Jeffrey L ; Logsdon, John M ; Neiman, Maurine ; Arkhipova, Irina</creatorcontrib><description>Abstract
How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.</description><identifier>ISSN: 1537-1719</identifier><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msab121</identifier><identifier>PMID: 33885820</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Cytogenetics ; Discoveries ; DNA sequencing ; Fresh water ; Genes ; Genome ; Genomes ; Genomics ; Histones - genetics ; Humans ; Nucleotide sequencing ; Reproduction, Asexual - genetics ; Ribosomal RNA ; Snails - genetics</subject><ispartof>Molecular biology and evolution, 2021-09, Vol.38 (9), p.3581-3592</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</citedby><cites>FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</cites><orcidid>0000-0003-2959-2524 ; 0000-0001-9581-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33885820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Arkhipova, Irina</contributor><creatorcontrib>McElroy, Kyle E</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><creatorcontrib>Lamatsch, Dunja K</creatorcontrib><creatorcontrib>Bankers, Laura</creatorcontrib><creatorcontrib>Fields, Peter D</creatorcontrib><creatorcontrib>Jalinsky, Joseph R</creatorcontrib><creatorcontrib>Sharbrough, Joel</creatorcontrib><creatorcontrib>Boore, Jeffrey L</creatorcontrib><creatorcontrib>Logsdon, John M</creatorcontrib><creatorcontrib>Neiman, Maurine</creatorcontrib><title>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract
How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.</description><subject>Animals</subject><subject>Cytogenetics</subject><subject>Discoveries</subject><subject>DNA sequencing</subject><subject>Fresh water</subject><subject>Genes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>Nucleotide sequencing</subject><subject>Reproduction, Asexual - genetics</subject><subject>Ribosomal RNA</subject><subject>Snails - genetics</subject><issn>1537-1719</issn><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkTtPwzAUhS0EouWxMiKvDC1-JbEXpKgCilRAqsps2a5TDEkcxSnQf4-hpZQJefDV9XfO9dUB4AyjIUaCXla-1PbtsgpKY4L3QB8nNBvgDIv9nboHjkJ4QQgzlqaHoEcp5wknqA9kHuzHUpWuW8E8BG-c6uwcvrvuGd6r9jXWt7b2lTPw-qNRdXC-hr6AM1XPbVWu4NQ29lvSTh9yGLtw7ELna_uls-EEHBSqDPZ0cx-Dp5vr2Wg8mDze3o3yycCwlHYDrRMjFNEJFYIViKZzrm2hKWMCIW4VZdQQoyMsiMGKoMgobAjPeJIVaUqPwdXat1nqys6NrbtWlbJpXaXalfTKyb8vtXuWC_8mOeVEEBQNhmuDhSqtdHXhI2biiWs6E_cpXOznWZYwhkSKfwWm9SG0ttgOw0h-ZSPX2chNNlFwvvvFLf4TRgQu1oBfNv-ZfQJPeJyo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>McElroy, Kyle E</creator><creator>Müller, Stefan</creator><creator>Lamatsch, Dunja K</creator><creator>Bankers, Laura</creator><creator>Fields, Peter D</creator><creator>Jalinsky, Joseph R</creator><creator>Sharbrough, Joel</creator><creator>Boore, Jeffrey L</creator><creator>Logsdon, John M</creator><creator>Neiman, Maurine</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2959-2524</orcidid><orcidid>https://orcid.org/0000-0001-9581-2535</orcidid></search><sort><creationdate>20210901</creationdate><title>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</title><author>McElroy, Kyle E ; Müller, Stefan ; Lamatsch, Dunja K ; Bankers, Laura ; Fields, Peter D ; Jalinsky, Joseph R ; Sharbrough, Joel ; Boore, Jeffrey L ; Logsdon, John M ; Neiman, Maurine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cytogenetics</topic><topic>Discoveries</topic><topic>DNA sequencing</topic><topic>Fresh water</topic><topic>Genes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>Nucleotide sequencing</topic><topic>Reproduction, Asexual - genetics</topic><topic>Ribosomal RNA</topic><topic>Snails - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McElroy, Kyle E</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><creatorcontrib>Lamatsch, Dunja K</creatorcontrib><creatorcontrib>Bankers, Laura</creatorcontrib><creatorcontrib>Fields, Peter D</creatorcontrib><creatorcontrib>Jalinsky, Joseph R</creatorcontrib><creatorcontrib>Sharbrough, Joel</creatorcontrib><creatorcontrib>Boore, Jeffrey L</creatorcontrib><creatorcontrib>Logsdon, John M</creatorcontrib><creatorcontrib>Neiman, Maurine</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McElroy, Kyle E</au><au>Müller, Stefan</au><au>Lamatsch, Dunja K</au><au>Bankers, Laura</au><au>Fields, Peter D</au><au>Jalinsky, Joseph R</au><au>Sharbrough, Joel</au><au>Boore, Jeffrey L</au><au>Logsdon, John M</au><au>Neiman, Maurine</au><au>Arkhipova, Irina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>38</volume><issue>9</issue><spage>3581</spage><epage>3592</epage><pages>3581-3592</pages><issn>1537-1719</issn><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract
How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33885820</pmid><doi>10.1093/molbev/msab121</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2959-2524</orcidid><orcidid>https://orcid.org/0000-0001-9581-2535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-1719 |
ispartof | Molecular biology and evolution, 2021-09, Vol.38 (9), p.3581-3592 |
issn | 1537-1719 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382920 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Cytogenetics Discoveries DNA sequencing Fresh water Genes Genome Genomes Genomics Histones - genetics Humans Nucleotide sequencing Reproduction, Asexual - genetics Ribosomal RNA Snails - genetics |
title | Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asexuality%20Associated%20with%20Marked%20Genomic%20Expansion%20of%20Tandemly%20Repeated%20rRNA%20and%20Histone%20Genes&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=McElroy,%20Kyle%20E&rft.date=2021-09-01&rft.volume=38&rft.issue=9&rft.spage=3581&rft.epage=3592&rft.pages=3581-3592&rft.issn=1537-1719&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msab121&rft_dat=%3Cgale_pubme%3EA775440961%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33885820&rft_galeid=A775440961&rft_oup_id=10.1093/molbev/msab121&rfr_iscdi=true |