Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes

Abstract How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2021-09, Vol.38 (9), p.3581-3592
Hauptverfasser: McElroy, Kyle E, Müller, Stefan, Lamatsch, Dunja K, Bankers, Laura, Fields, Peter D, Jalinsky, Joseph R, Sharbrough, Joel, Boore, Jeffrey L, Logsdon, John M, Neiman, Maurine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3592
container_issue 9
container_start_page 3581
container_title Molecular biology and evolution
container_volume 38
creator McElroy, Kyle E
Müller, Stefan
Lamatsch, Dunja K
Bankers, Laura
Fields, Peter D
Jalinsky, Joseph R
Sharbrough, Joel
Boore, Jeffrey L
Logsdon, John M
Neiman, Maurine
description Abstract How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.
doi_str_mv 10.1093/molbev/msab121
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775440961</galeid><oup_id>10.1093/molbev/msab121</oup_id><sourcerecordid>A775440961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EouWxMiKvDC1-JbEXpKgCilRAqsps2a5TDEkcxSnQf4-hpZQJefDV9XfO9dUB4AyjIUaCXla-1PbtsgpKY4L3QB8nNBvgDIv9nboHjkJ4QQgzlqaHoEcp5wknqA9kHuzHUpWuW8E8BG-c6uwcvrvuGd6r9jXWt7b2lTPw-qNRdXC-hr6AM1XPbVWu4NQ29lvSTh9yGLtw7ELna_uls-EEHBSqDPZ0cx-Dp5vr2Wg8mDze3o3yycCwlHYDrRMjFNEJFYIViKZzrm2hKWMCIW4VZdQQoyMsiMGKoMgobAjPeJIVaUqPwdXat1nqys6NrbtWlbJpXaXalfTKyb8vtXuWC_8mOeVEEBQNhmuDhSqtdHXhI2biiWs6E_cpXOznWZYwhkSKfwWm9SG0ttgOw0h-ZSPX2chNNlFwvvvFLf4TRgQu1oBfNv-ZfQJPeJyo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McElroy, Kyle E ; Müller, Stefan ; Lamatsch, Dunja K ; Bankers, Laura ; Fields, Peter D ; Jalinsky, Joseph R ; Sharbrough, Joel ; Boore, Jeffrey L ; Logsdon, John M ; Neiman, Maurine</creator><contributor>Arkhipova, Irina</contributor><creatorcontrib>McElroy, Kyle E ; Müller, Stefan ; Lamatsch, Dunja K ; Bankers, Laura ; Fields, Peter D ; Jalinsky, Joseph R ; Sharbrough, Joel ; Boore, Jeffrey L ; Logsdon, John M ; Neiman, Maurine ; Arkhipova, Irina</creatorcontrib><description>Abstract How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.</description><identifier>ISSN: 1537-1719</identifier><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msab121</identifier><identifier>PMID: 33885820</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Cytogenetics ; Discoveries ; DNA sequencing ; Fresh water ; Genes ; Genome ; Genomes ; Genomics ; Histones - genetics ; Humans ; Nucleotide sequencing ; Reproduction, Asexual - genetics ; Ribosomal RNA ; Snails - genetics</subject><ispartof>Molecular biology and evolution, 2021-09, Vol.38 (9), p.3581-3592</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</citedby><cites>FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</cites><orcidid>0000-0003-2959-2524 ; 0000-0001-9581-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33885820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Arkhipova, Irina</contributor><creatorcontrib>McElroy, Kyle E</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><creatorcontrib>Lamatsch, Dunja K</creatorcontrib><creatorcontrib>Bankers, Laura</creatorcontrib><creatorcontrib>Fields, Peter D</creatorcontrib><creatorcontrib>Jalinsky, Joseph R</creatorcontrib><creatorcontrib>Sharbrough, Joel</creatorcontrib><creatorcontrib>Boore, Jeffrey L</creatorcontrib><creatorcontrib>Logsdon, John M</creatorcontrib><creatorcontrib>Neiman, Maurine</creatorcontrib><title>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.</description><subject>Animals</subject><subject>Cytogenetics</subject><subject>Discoveries</subject><subject>DNA sequencing</subject><subject>Fresh water</subject><subject>Genes</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>Nucleotide sequencing</subject><subject>Reproduction, Asexual - genetics</subject><subject>Ribosomal RNA</subject><subject>Snails - genetics</subject><issn>1537-1719</issn><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkTtPwzAUhS0EouWxMiKvDC1-JbEXpKgCilRAqsps2a5TDEkcxSnQf4-hpZQJefDV9XfO9dUB4AyjIUaCXla-1PbtsgpKY4L3QB8nNBvgDIv9nboHjkJ4QQgzlqaHoEcp5wknqA9kHuzHUpWuW8E8BG-c6uwcvrvuGd6r9jXWt7b2lTPw-qNRdXC-hr6AM1XPbVWu4NQ29lvSTh9yGLtw7ELna_uls-EEHBSqDPZ0cx-Dp5vr2Wg8mDze3o3yycCwlHYDrRMjFNEJFYIViKZzrm2hKWMCIW4VZdQQoyMsiMGKoMgobAjPeJIVaUqPwdXat1nqys6NrbtWlbJpXaXalfTKyb8vtXuWC_8mOeVEEBQNhmuDhSqtdHXhI2biiWs6E_cpXOznWZYwhkSKfwWm9SG0ttgOw0h-ZSPX2chNNlFwvvvFLf4TRgQu1oBfNv-ZfQJPeJyo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>McElroy, Kyle E</creator><creator>Müller, Stefan</creator><creator>Lamatsch, Dunja K</creator><creator>Bankers, Laura</creator><creator>Fields, Peter D</creator><creator>Jalinsky, Joseph R</creator><creator>Sharbrough, Joel</creator><creator>Boore, Jeffrey L</creator><creator>Logsdon, John M</creator><creator>Neiman, Maurine</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2959-2524</orcidid><orcidid>https://orcid.org/0000-0001-9581-2535</orcidid></search><sort><creationdate>20210901</creationdate><title>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</title><author>McElroy, Kyle E ; Müller, Stefan ; Lamatsch, Dunja K ; Bankers, Laura ; Fields, Peter D ; Jalinsky, Joseph R ; Sharbrough, Joel ; Boore, Jeffrey L ; Logsdon, John M ; Neiman, Maurine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-bb5c9a2b53994f036d8befb3449008ea343c2cbc4692c1a20f03a1c287857f663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cytogenetics</topic><topic>Discoveries</topic><topic>DNA sequencing</topic><topic>Fresh water</topic><topic>Genes</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>Nucleotide sequencing</topic><topic>Reproduction, Asexual - genetics</topic><topic>Ribosomal RNA</topic><topic>Snails - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McElroy, Kyle E</creatorcontrib><creatorcontrib>Müller, Stefan</creatorcontrib><creatorcontrib>Lamatsch, Dunja K</creatorcontrib><creatorcontrib>Bankers, Laura</creatorcontrib><creatorcontrib>Fields, Peter D</creatorcontrib><creatorcontrib>Jalinsky, Joseph R</creatorcontrib><creatorcontrib>Sharbrough, Joel</creatorcontrib><creatorcontrib>Boore, Jeffrey L</creatorcontrib><creatorcontrib>Logsdon, John M</creatorcontrib><creatorcontrib>Neiman, Maurine</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McElroy, Kyle E</au><au>Müller, Stefan</au><au>Lamatsch, Dunja K</au><au>Bankers, Laura</au><au>Fields, Peter D</au><au>Jalinsky, Joseph R</au><au>Sharbrough, Joel</au><au>Boore, Jeffrey L</au><au>Logsdon, John M</au><au>Neiman, Maurine</au><au>Arkhipova, Irina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>38</volume><issue>9</issue><spage>3581</spage><epage>3592</epage><pages>3581-3592</pages><issn>1537-1719</issn><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Abstract How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits—mode of genomic inheritance—influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S–5.8S–28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA–histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction—with potential functional consequences related to the loss of sexual reproduction.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>33885820</pmid><doi>10.1093/molbev/msab121</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2959-2524</orcidid><orcidid>https://orcid.org/0000-0001-9581-2535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1537-1719
ispartof Molecular biology and evolution, 2021-09, Vol.38 (9), p.3581-3592
issn 1537-1719
0737-4038
1537-1719
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8382920
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Cytogenetics
Discoveries
DNA sequencing
Fresh water
Genes
Genome
Genomes
Genomics
Histones - genetics
Humans
Nucleotide sequencing
Reproduction, Asexual - genetics
Ribosomal RNA
Snails - genetics
title Asexuality Associated with Marked Genomic Expansion of Tandemly Repeated rRNA and Histone Genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asexuality%20Associated%20with%20Marked%20Genomic%20Expansion%20of%20Tandemly%20Repeated%20rRNA%20and%20Histone%20Genes&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=McElroy,%20Kyle%20E&rft.date=2021-09-01&rft.volume=38&rft.issue=9&rft.spage=3581&rft.epage=3592&rft.pages=3581-3592&rft.issn=1537-1719&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msab121&rft_dat=%3Cgale_pubme%3EA775440961%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33885820&rft_galeid=A775440961&rft_oup_id=10.1093/molbev/msab121&rfr_iscdi=true