Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway

The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2021-08, Vol.184 (17), p.4495-4511.e19
Hauptverfasser: Evavold, Charles L., Hafner-Bratkovič, Iva, Devant, Pascal, D’Andrea, Jasmin M., Ngwa, Elsy M., Boršić, Elvira, Doench, John G., LaFleur, Martin W., Sharpe, Arlene H., Thiagarajah, Jay R., Kagan, Jonathan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4511.e19
container_issue 17
container_start_page 4495
container_title Cell
container_volume 184
creator Evavold, Charles L.
Hafner-Bratkovič, Iva
Devant, Pascal
D’Andrea, Jasmin M.
Ngwa, Elsy M.
Boršić, Elvira
Doench, John G.
LaFleur, Martin W.
Sharpe, Arlene H.
Thiagarajah, Jay R.
Kagan, Jonathan C.
description The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag). [Display omitted] •The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages.
doi_str_mv 10.1016/j.cell.2021.06.028
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8380731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867421007960</els_id><sourcerecordid>S0092867421007960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpaDZJ_0APRX_AzkiyZBlKoWzbJBBYWJJDTkKSpV0ttmUkJ2H76-tl09BccpqBee8N70PoC4GSABGXu9K6rispUFKCKIHKD2hBoKmLitT0I1oANLSQoq5O0VnOOwCQnPNP6JRVVDas4gv0sIzDlGKHo8cbnVuX-jDgnzh2YRN7l8IfPYU4YD20eNynOE4xh4zNHk9bh9d689jpKaZi3or-brVeEjzqafus9xfoxOsuu88v8xzd__51t7wubldXN8sft4XllEwFtwIqUnFOLPPEQGO00MYw47k2lQdvQDacyYq3XrjWN3XtCRXOtERYyRp2jr4fc8dH07vWurmP7tSYQq_TXkUd1NvLELZqE5-UZBJqRuYAegywKeacnH_1ElAH0GqnDqDVAbQCoWbQs-nr_19fLf_IzoJvR4Gbuz8Fl1S2wQ3WtSE5O6k2hvfy_wLq65Gm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</title><source>MEDLINE</source><source>EZB Free E-Journals</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals Collection</source><creator>Evavold, Charles L. ; Hafner-Bratkovič, Iva ; Devant, Pascal ; D’Andrea, Jasmin M. ; Ngwa, Elsy M. ; Boršić, Elvira ; Doench, John G. ; LaFleur, Martin W. ; Sharpe, Arlene H. ; Thiagarajah, Jay R. ; Kagan, Jonathan C.</creator><creatorcontrib>Evavold, Charles L. ; Hafner-Bratkovič, Iva ; Devant, Pascal ; D’Andrea, Jasmin M. ; Ngwa, Elsy M. ; Boršić, Elvira ; Doench, John G. ; LaFleur, Martin W. ; Sharpe, Arlene H. ; Thiagarajah, Jay R. ; Kagan, Jonathan C.</creatorcontrib><description>The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag). [Display omitted] •The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2021.06.028</identifier><identifier>PMID: 34289345</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Amino Acids - metabolism ; Animals ; Cell Adhesion Molecules, Neuronal - metabolism ; Cell Line ; gasdermin D ; Genetic Testing ; Humans ; inflammasomes ; Inflammasomes - metabolism ; inflammation ; innate immunity ; Intracellular Signaling Peptides and Proteins - chemistry ; Intracellular Signaling Peptides and Proteins - metabolism ; macrophages ; Macrophages - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Mice, Inbred C57BL ; Mitochondria - metabolism ; Monomeric GTP-Binding Proteins - metabolism ; mtorc1 ; Nerve Growth Factors - metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; Phosphate-Binding Proteins - chemistry ; Phosphate-Binding Proteins - metabolism ; Protein Domains ; Protein Multimerization ; Pyroptosis ; ragulator ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA, Guide, Kinetoplastida - metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Cell, 2021-08, Vol.184 (17), p.4495-4511.e19</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</citedby><cites>FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867421007960$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34289345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evavold, Charles L.</creatorcontrib><creatorcontrib>Hafner-Bratkovič, Iva</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>D’Andrea, Jasmin M.</creatorcontrib><creatorcontrib>Ngwa, Elsy M.</creatorcontrib><creatorcontrib>Boršić, Elvira</creatorcontrib><creatorcontrib>Doench, John G.</creatorcontrib><creatorcontrib>LaFleur, Martin W.</creatorcontrib><creatorcontrib>Sharpe, Arlene H.</creatorcontrib><creatorcontrib>Thiagarajah, Jay R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><title>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</title><title>Cell</title><addtitle>Cell</addtitle><description>The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag). [Display omitted] •The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cell Line</subject><subject>gasdermin D</subject><subject>Genetic Testing</subject><subject>Humans</subject><subject>inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>inflammation</subject><subject>innate immunity</subject><subject>Intracellular Signaling Peptides and Proteins - chemistry</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>macrophages</subject><subject>Macrophages - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria - metabolism</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>mtorc1</subject><subject>Nerve Growth Factors - metabolism</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>Phosphate-Binding Proteins - chemistry</subject><subject>Phosphate-Binding Proteins - metabolism</subject><subject>Protein Domains</subject><subject>Protein Multimerization</subject><subject>Pyroptosis</subject><subject>ragulator</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Guide, Kinetoplastida - metabolism</subject><subject>Signal Transduction</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFr3DAQhUVpaDZJ_0APRX_AzkiyZBlKoWzbJBBYWJJDTkKSpV0ttmUkJ2H76-tl09BccpqBee8N70PoC4GSABGXu9K6rispUFKCKIHKD2hBoKmLitT0I1oANLSQoq5O0VnOOwCQnPNP6JRVVDas4gv0sIzDlGKHo8cbnVuX-jDgnzh2YRN7l8IfPYU4YD20eNynOE4xh4zNHk9bh9d689jpKaZi3or-brVeEjzqafus9xfoxOsuu88v8xzd__51t7wubldXN8sft4XllEwFtwIqUnFOLPPEQGO00MYw47k2lQdvQDacyYq3XrjWN3XtCRXOtERYyRp2jr4fc8dH07vWurmP7tSYQq_TXkUd1NvLELZqE5-UZBJqRuYAegywKeacnH_1ElAH0GqnDqDVAbQCoWbQs-nr_19fLf_IzoJvR4Gbuz8Fl1S2wQ3WtSE5O6k2hvfy_wLq65Gm</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Evavold, Charles L.</creator><creator>Hafner-Bratkovič, Iva</creator><creator>Devant, Pascal</creator><creator>D’Andrea, Jasmin M.</creator><creator>Ngwa, Elsy M.</creator><creator>Boršić, Elvira</creator><creator>Doench, John G.</creator><creator>LaFleur, Martin W.</creator><creator>Sharpe, Arlene H.</creator><creator>Thiagarajah, Jay R.</creator><creator>Kagan, Jonathan C.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20210819</creationdate><title>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</title><author>Evavold, Charles L. ; Hafner-Bratkovič, Iva ; Devant, Pascal ; D’Andrea, Jasmin M. ; Ngwa, Elsy M. ; Boršić, Elvira ; Doench, John G. ; LaFleur, Martin W. ; Sharpe, Arlene H. ; Thiagarajah, Jay R. ; Kagan, Jonathan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cell Line</topic><topic>gasdermin D</topic><topic>Genetic Testing</topic><topic>Humans</topic><topic>inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>inflammation</topic><topic>innate immunity</topic><topic>Intracellular Signaling Peptides and Proteins - chemistry</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>macrophages</topic><topic>Macrophages - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria - metabolism</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>mtorc1</topic><topic>Nerve Growth Factors - metabolism</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>Phosphate-Binding Proteins - chemistry</topic><topic>Phosphate-Binding Proteins - metabolism</topic><topic>Protein Domains</topic><topic>Protein Multimerization</topic><topic>Pyroptosis</topic><topic>ragulator</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Guide, Kinetoplastida - metabolism</topic><topic>Signal Transduction</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evavold, Charles L.</creatorcontrib><creatorcontrib>Hafner-Bratkovič, Iva</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>D’Andrea, Jasmin M.</creatorcontrib><creatorcontrib>Ngwa, Elsy M.</creatorcontrib><creatorcontrib>Boršić, Elvira</creatorcontrib><creatorcontrib>Doench, John G.</creatorcontrib><creatorcontrib>LaFleur, Martin W.</creatorcontrib><creatorcontrib>Sharpe, Arlene H.</creatorcontrib><creatorcontrib>Thiagarajah, Jay R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evavold, Charles L.</au><au>Hafner-Bratkovič, Iva</au><au>Devant, Pascal</au><au>D’Andrea, Jasmin M.</au><au>Ngwa, Elsy M.</au><au>Boršić, Elvira</au><au>Doench, John G.</au><au>LaFleur, Martin W.</au><au>Sharpe, Arlene H.</au><au>Thiagarajah, Jay R.</au><au>Kagan, Jonathan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>184</volume><issue>17</issue><spage>4495</spage><epage>4511.e19</epage><pages>4495-4511.e19</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag). [Display omitted] •The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34289345</pmid><doi>10.1016/j.cell.2021.06.028</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2021-08, Vol.184 (17), p.4495-4511.e19
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8380731
source MEDLINE; EZB Free E-Journals; Cell Press Free Archives; Elsevier ScienceDirect Journals Collection
subjects Adaptor Proteins, Signal Transducing - metabolism
Amino Acids - metabolism
Animals
Cell Adhesion Molecules, Neuronal - metabolism
Cell Line
gasdermin D
Genetic Testing
Humans
inflammasomes
Inflammasomes - metabolism
inflammation
innate immunity
Intracellular Signaling Peptides and Proteins - chemistry
Intracellular Signaling Peptides and Proteins - metabolism
macrophages
Macrophages - metabolism
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mechanistic Target of Rapamycin Complex 2 - metabolism
Mice, Inbred C57BL
Mitochondria - metabolism
Monomeric GTP-Binding Proteins - metabolism
mtorc1
Nerve Growth Factors - metabolism
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
Phosphate-Binding Proteins - chemistry
Phosphate-Binding Proteins - metabolism
Protein Domains
Protein Multimerization
Pyroptosis
ragulator
reactive oxygen species
Reactive Oxygen Species - metabolism
RNA, Guide, Kinetoplastida - metabolism
Signal Transduction
TOR Serine-Threonine Kinases - metabolism
title Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20gasdermin%20D%20oligomerization%20and%20pyroptosis%20by%20the%20Ragulator-Rag-mTORC1%20pathway&rft.jtitle=Cell&rft.au=Evavold,%20Charles%20L.&rft.date=2021-08-19&rft.volume=184&rft.issue=17&rft.spage=4495&rft.epage=4511.e19&rft.pages=4495-4511.e19&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2021.06.028&rft_dat=%3Celsevier_pubme%3ES0092867421007960%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34289345&rft_els_id=S0092867421007960&rfr_iscdi=true