Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway
The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known t...
Gespeichert in:
Veröffentlicht in: | Cell 2021-08, Vol.184 (17), p.4495-4511.e19 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4511.e19 |
---|---|
container_issue | 17 |
container_start_page | 4495 |
container_title | Cell |
container_volume | 184 |
creator | Evavold, Charles L. Hafner-Bratkovič, Iva Devant, Pascal D’Andrea, Jasmin M. Ngwa, Elsy M. Boršić, Elvira Doench, John G. LaFleur, Martin W. Sharpe, Arlene H. Thiagarajah, Jay R. Kagan, Jonathan C. |
description | The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
[Display omitted]
•The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis
The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages. |
doi_str_mv | 10.1016/j.cell.2021.06.028 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8380731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867421007960</els_id><sourcerecordid>S0092867421007960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpaDZJ_0APRX_AzkiyZBlKoWzbJBBYWJJDTkKSpV0ttmUkJ2H76-tl09BccpqBee8N70PoC4GSABGXu9K6rispUFKCKIHKD2hBoKmLitT0I1oANLSQoq5O0VnOOwCQnPNP6JRVVDas4gv0sIzDlGKHo8cbnVuX-jDgnzh2YRN7l8IfPYU4YD20eNynOE4xh4zNHk9bh9d689jpKaZi3or-brVeEjzqafus9xfoxOsuu88v8xzd__51t7wubldXN8sft4XllEwFtwIqUnFOLPPEQGO00MYw47k2lQdvQDacyYq3XrjWN3XtCRXOtERYyRp2jr4fc8dH07vWurmP7tSYQq_TXkUd1NvLELZqE5-UZBJqRuYAegywKeacnH_1ElAH0GqnDqDVAbQCoWbQs-nr_19fLf_IzoJvR4Gbuz8Fl1S2wQ3WtSE5O6k2hvfy_wLq65Gm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</title><source>MEDLINE</source><source>EZB Free E-Journals</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals Collection</source><creator>Evavold, Charles L. ; Hafner-Bratkovič, Iva ; Devant, Pascal ; D’Andrea, Jasmin M. ; Ngwa, Elsy M. ; Boršić, Elvira ; Doench, John G. ; LaFleur, Martin W. ; Sharpe, Arlene H. ; Thiagarajah, Jay R. ; Kagan, Jonathan C.</creator><creatorcontrib>Evavold, Charles L. ; Hafner-Bratkovič, Iva ; Devant, Pascal ; D’Andrea, Jasmin M. ; Ngwa, Elsy M. ; Boršić, Elvira ; Doench, John G. ; LaFleur, Martin W. ; Sharpe, Arlene H. ; Thiagarajah, Jay R. ; Kagan, Jonathan C.</creatorcontrib><description>The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
[Display omitted]
•The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis
The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2021.06.028</identifier><identifier>PMID: 34289345</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Signal Transducing - metabolism ; Amino Acids - metabolism ; Animals ; Cell Adhesion Molecules, Neuronal - metabolism ; Cell Line ; gasdermin D ; Genetic Testing ; Humans ; inflammasomes ; Inflammasomes - metabolism ; inflammation ; innate immunity ; Intracellular Signaling Peptides and Proteins - chemistry ; Intracellular Signaling Peptides and Proteins - metabolism ; macrophages ; Macrophages - metabolism ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mechanistic Target of Rapamycin Complex 2 - metabolism ; Mice, Inbred C57BL ; Mitochondria - metabolism ; Monomeric GTP-Binding Proteins - metabolism ; mtorc1 ; Nerve Growth Factors - metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; Phosphate-Binding Proteins - chemistry ; Phosphate-Binding Proteins - metabolism ; Protein Domains ; Protein Multimerization ; Pyroptosis ; ragulator ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA, Guide, Kinetoplastida - metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Cell, 2021-08, Vol.184 (17), p.4495-4511.e19</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</citedby><cites>FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867421007960$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34289345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evavold, Charles L.</creatorcontrib><creatorcontrib>Hafner-Bratkovič, Iva</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>D’Andrea, Jasmin M.</creatorcontrib><creatorcontrib>Ngwa, Elsy M.</creatorcontrib><creatorcontrib>Boršić, Elvira</creatorcontrib><creatorcontrib>Doench, John G.</creatorcontrib><creatorcontrib>LaFleur, Martin W.</creatorcontrib><creatorcontrib>Sharpe, Arlene H.</creatorcontrib><creatorcontrib>Thiagarajah, Jay R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><title>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</title><title>Cell</title><addtitle>Cell</addtitle><description>The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
[Display omitted]
•The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis
The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages.</description><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Amino Acids - metabolism</subject><subject>Animals</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Cell Line</subject><subject>gasdermin D</subject><subject>Genetic Testing</subject><subject>Humans</subject><subject>inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>inflammation</subject><subject>innate immunity</subject><subject>Intracellular Signaling Peptides and Proteins - chemistry</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>macrophages</subject><subject>Macrophages - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 2 - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria - metabolism</subject><subject>Monomeric GTP-Binding Proteins - metabolism</subject><subject>mtorc1</subject><subject>Nerve Growth Factors - metabolism</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>Phosphate-Binding Proteins - chemistry</subject><subject>Phosphate-Binding Proteins - metabolism</subject><subject>Protein Domains</subject><subject>Protein Multimerization</subject><subject>Pyroptosis</subject><subject>ragulator</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Guide, Kinetoplastida - metabolism</subject><subject>Signal Transduction</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFr3DAQhUVpaDZJ_0APRX_AzkiyZBlKoWzbJBBYWJJDTkKSpV0ttmUkJ2H76-tl09BccpqBee8N70PoC4GSABGXu9K6rispUFKCKIHKD2hBoKmLitT0I1oANLSQoq5O0VnOOwCQnPNP6JRVVDas4gv0sIzDlGKHo8cbnVuX-jDgnzh2YRN7l8IfPYU4YD20eNynOE4xh4zNHk9bh9d689jpKaZi3or-brVeEjzqafus9xfoxOsuu88v8xzd__51t7wubldXN8sft4XllEwFtwIqUnFOLPPEQGO00MYw47k2lQdvQDacyYq3XrjWN3XtCRXOtERYyRp2jr4fc8dH07vWurmP7tSYQq_TXkUd1NvLELZqE5-UZBJqRuYAegywKeacnH_1ElAH0GqnDqDVAbQCoWbQs-nr_19fLf_IzoJvR4Gbuz8Fl1S2wQ3WtSE5O6k2hvfy_wLq65Gm</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Evavold, Charles L.</creator><creator>Hafner-Bratkovič, Iva</creator><creator>Devant, Pascal</creator><creator>D’Andrea, Jasmin M.</creator><creator>Ngwa, Elsy M.</creator><creator>Boršić, Elvira</creator><creator>Doench, John G.</creator><creator>LaFleur, Martin W.</creator><creator>Sharpe, Arlene H.</creator><creator>Thiagarajah, Jay R.</creator><creator>Kagan, Jonathan C.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20210819</creationdate><title>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</title><author>Evavold, Charles L. ; Hafner-Bratkovič, Iva ; Devant, Pascal ; D’Andrea, Jasmin M. ; Ngwa, Elsy M. ; Boršić, Elvira ; Doench, John G. ; LaFleur, Martin W. ; Sharpe, Arlene H. ; Thiagarajah, Jay R. ; Kagan, Jonathan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-5c60414551c3f1b09ba6abb3bf5ab4f0fb08953845df6edf977f126ebd16c8393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Amino Acids - metabolism</topic><topic>Animals</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Cell Line</topic><topic>gasdermin D</topic><topic>Genetic Testing</topic><topic>Humans</topic><topic>inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>inflammation</topic><topic>innate immunity</topic><topic>Intracellular Signaling Peptides and Proteins - chemistry</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>macrophages</topic><topic>Macrophages - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 2 - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria - metabolism</topic><topic>Monomeric GTP-Binding Proteins - metabolism</topic><topic>mtorc1</topic><topic>Nerve Growth Factors - metabolism</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>Phosphate-Binding Proteins - chemistry</topic><topic>Phosphate-Binding Proteins - metabolism</topic><topic>Protein Domains</topic><topic>Protein Multimerization</topic><topic>Pyroptosis</topic><topic>ragulator</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Guide, Kinetoplastida - metabolism</topic><topic>Signal Transduction</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evavold, Charles L.</creatorcontrib><creatorcontrib>Hafner-Bratkovič, Iva</creatorcontrib><creatorcontrib>Devant, Pascal</creatorcontrib><creatorcontrib>D’Andrea, Jasmin M.</creatorcontrib><creatorcontrib>Ngwa, Elsy M.</creatorcontrib><creatorcontrib>Boršić, Elvira</creatorcontrib><creatorcontrib>Doench, John G.</creatorcontrib><creatorcontrib>LaFleur, Martin W.</creatorcontrib><creatorcontrib>Sharpe, Arlene H.</creatorcontrib><creatorcontrib>Thiagarajah, Jay R.</creatorcontrib><creatorcontrib>Kagan, Jonathan C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evavold, Charles L.</au><au>Hafner-Bratkovič, Iva</au><au>Devant, Pascal</au><au>D’Andrea, Jasmin M.</au><au>Ngwa, Elsy M.</au><au>Boršić, Elvira</au><au>Doench, John G.</au><au>LaFleur, Martin W.</au><au>Sharpe, Arlene H.</au><au>Thiagarajah, Jay R.</au><au>Kagan, Jonathan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>184</volume><issue>17</issue><spage>4495</spage><epage>4511.e19</epage><pages>4495-4511.e19</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).
[Display omitted]
•The Ragulator-Rag-mTORC1 pathway is required for pyroptosis induced by gasdermin D•Ragulator-Rag promotes gasdermin D oligomerization but not membrane localization•Ragulator-Rag promotes reactive oxygen species (ROS) production in macrophages•ROS promotes gasdermin D oligomerization, pore formation, and pyroptosis
The Ragulator-Rag complex is required for the oligomerization of gasdermin D at the plasma membrane and for pore formation and pyroptosis in macrophages.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34289345</pmid><doi>10.1016/j.cell.2021.06.028</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2021-08, Vol.184 (17), p.4495-4511.e19 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8380731 |
source | MEDLINE; EZB Free E-Journals; Cell Press Free Archives; Elsevier ScienceDirect Journals Collection |
subjects | Adaptor Proteins, Signal Transducing - metabolism Amino Acids - metabolism Animals Cell Adhesion Molecules, Neuronal - metabolism Cell Line gasdermin D Genetic Testing Humans inflammasomes Inflammasomes - metabolism inflammation innate immunity Intracellular Signaling Peptides and Proteins - chemistry Intracellular Signaling Peptides and Proteins - metabolism macrophages Macrophages - metabolism Mechanistic Target of Rapamycin Complex 1 - metabolism Mechanistic Target of Rapamycin Complex 2 - metabolism Mice, Inbred C57BL Mitochondria - metabolism Monomeric GTP-Binding Proteins - metabolism mtorc1 Nerve Growth Factors - metabolism NLR Family, Pyrin Domain-Containing 3 Protein - metabolism Phosphate-Binding Proteins - chemistry Phosphate-Binding Proteins - metabolism Protein Domains Protein Multimerization Pyroptosis ragulator reactive oxygen species Reactive Oxygen Species - metabolism RNA, Guide, Kinetoplastida - metabolism Signal Transduction TOR Serine-Threonine Kinases - metabolism |
title | Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20gasdermin%20D%20oligomerization%20and%20pyroptosis%20by%20the%20Ragulator-Rag-mTORC1%20pathway&rft.jtitle=Cell&rft.au=Evavold,%20Charles%20L.&rft.date=2021-08-19&rft.volume=184&rft.issue=17&rft.spage=4495&rft.epage=4511.e19&rft.pages=4495-4511.e19&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2021.06.028&rft_dat=%3Celsevier_pubme%3ES0092867421007960%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34289345&rft_els_id=S0092867421007960&rfr_iscdi=true |