3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity
3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4...
Gespeichert in:
Veröffentlicht in: | Acta pharmacologica Sinica 2021-09, Vol.42 (9), p.1449-1460 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1460 |
---|---|
container_issue | 9 |
container_start_page | 1449 |
container_title | Acta pharmacologica Sinica |
container_volume | 42 |
creator | Lee, Jangho Song, Ji-Hye Chung, Min-Yu Lee, Jin-Hyuk Nam, Tae-Gyu Park, Jae Ho Hwang, Jin-Taek Choi, Hyo-Kyoung |
description | 3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In
ob/ob
mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD. |
doi_str_mv | 10.1038/s41401-020-00571-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8379200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563062494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</originalsourceid><addsrcrecordid>eNp9UU1v1TAQjBAVLYU_wAFZ4vpC_ZXYuSChqgWkSlzgbNnO5sVVnh1s54n8JP4lDq8UuHDaXe_M7MhTVa8Ifkswk1eJE45JjSmuMW4EqcWT6oII3tSCNvxp6dvyyLFk59XzlO4xZpSR7ll1zhjDrJPyovrBdrzu3bj2MXxfc5gW8LBDGh0gaxMmlwGFAcUlO79DaZnnCClBQnkENMew30YX_AbywevJhrGwLBp0ziua3BEi6l0CnQA5jw7OAjJraUdnXBHdo5lhjEaXcvCAtIW8TjlqnwaIG0nb7I4ury-qs0FPCV4-1Mvq6-3Nl-uP9d3nD5-u39_Vlguea9O0xrSWMKCSksE0oE3bUm70QLmkhpCBUNm1VvdCcKpxY6UdLGguhSEUs8vq3Ul3XswBegu-uJnUHN1Bx1UF7dS_G-9GtQ9HJZnoKN4E3jwIxPBtgZTVfVhi-ZqkaNMyXMx0vKDoCWVjSCnC8HiBYLXFq07xqhKv-hWvEoX0-m9vj5TfeRYAOwFSWfk9xD-3_yP7E7xCtaI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563062494</pqid></control><display><type>article</type><title>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lee, Jangho ; Song, Ji-Hye ; Chung, Min-Yu ; Lee, Jin-Hyuk ; Nam, Tae-Gyu ; Park, Jae Ho ; Hwang, Jin-Taek ; Choi, Hyo-Kyoung</creator><creatorcontrib>Lee, Jangho ; Song, Ji-Hye ; Chung, Min-Yu ; Lee, Jin-Hyuk ; Nam, Tae-Gyu ; Park, Jae Ho ; Hwang, Jin-Taek ; Choi, Hyo-Kyoung</creatorcontrib><description>3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In
ob/ob
mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.</description><identifier>ISSN: 1671-4083</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1038/s41401-020-00571-7</identifier><identifier>PMID: 33303988</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Animal models ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Body fat ; Body weight ; Catechols - pharmacology ; E1A-Associated p300 Protein ; Fatty liver ; Flavonoids ; Gene expression ; Hep G2 Cells ; Histone acetyltransferase ; Histone Acetyltransferases - antagonists & inhibitors ; Histone Acetyltransferases - metabolism ; Histones - metabolism ; Homovanillic acid ; Humans ; Hypothalamic-pituitary-adrenal axis ; Immunology ; Internal Medicine ; Large intestine ; Lipids ; Lipogenesis ; Lipoproteins - metabolism ; Liver ; Liver diseases ; Male ; Medical Microbiology ; Mice ; Microflora ; Non-alcoholic Fatty Liver Disease - drug therapy ; Non-alcoholic Fatty Liver Disease - metabolism ; p-Hydroxyphenylacetic acid ; Pharmacology/Toxicology ; Quercetin ; Rutin ; Rutin - metabolism ; Rutin - therapeutic use ; Triglycerides - metabolism ; Vaccine</subject><ispartof>Acta pharmacologica Sinica, 2021-09, Vol.42 (9), p.1449-1460</ispartof><rights>CPS and SIMM 2020</rights><rights>2020. CPS and SIMM.</rights><rights>CPS and SIMM 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</citedby><cites>FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379200/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379200/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33303988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jangho</creatorcontrib><creatorcontrib>Song, Ji-Hye</creatorcontrib><creatorcontrib>Chung, Min-Yu</creatorcontrib><creatorcontrib>Lee, Jin-Hyuk</creatorcontrib><creatorcontrib>Nam, Tae-Gyu</creatorcontrib><creatorcontrib>Park, Jae Ho</creatorcontrib><creatorcontrib>Hwang, Jin-Taek</creatorcontrib><creatorcontrib>Choi, Hyo-Kyoung</creatorcontrib><title>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><addtitle>Acta Pharmacol Sin</addtitle><description>3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In
ob/ob
mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.</description><subject>Animal models</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Catechols - pharmacology</subject><subject>E1A-Associated p300 Protein</subject><subject>Fatty liver</subject><subject>Flavonoids</subject><subject>Gene expression</subject><subject>Hep G2 Cells</subject><subject>Histone acetyltransferase</subject><subject>Histone Acetyltransferases - antagonists & inhibitors</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Histones - metabolism</subject><subject>Homovanillic acid</subject><subject>Humans</subject><subject>Hypothalamic-pituitary-adrenal axis</subject><subject>Immunology</subject><subject>Internal Medicine</subject><subject>Large intestine</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Lipoproteins - metabolism</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Microflora</subject><subject>Non-alcoholic Fatty Liver Disease - drug therapy</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>p-Hydroxyphenylacetic acid</subject><subject>Pharmacology/Toxicology</subject><subject>Quercetin</subject><subject>Rutin</subject><subject>Rutin - metabolism</subject><subject>Rutin - therapeutic use</subject><subject>Triglycerides - metabolism</subject><subject>Vaccine</subject><issn>1671-4083</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UU1v1TAQjBAVLYU_wAFZ4vpC_ZXYuSChqgWkSlzgbNnO5sVVnh1s54n8JP4lDq8UuHDaXe_M7MhTVa8Ifkswk1eJE45JjSmuMW4EqcWT6oII3tSCNvxp6dvyyLFk59XzlO4xZpSR7ll1zhjDrJPyovrBdrzu3bj2MXxfc5gW8LBDGh0gaxMmlwGFAcUlO79DaZnnCClBQnkENMew30YX_AbywevJhrGwLBp0ziua3BEi6l0CnQA5jw7OAjJraUdnXBHdo5lhjEaXcvCAtIW8TjlqnwaIG0nb7I4ury-qs0FPCV4-1Mvq6-3Nl-uP9d3nD5-u39_Vlguea9O0xrSWMKCSksE0oE3bUm70QLmkhpCBUNm1VvdCcKpxY6UdLGguhSEUs8vq3Ul3XswBegu-uJnUHN1Bx1UF7dS_G-9GtQ9HJZnoKN4E3jwIxPBtgZTVfVhi-ZqkaNMyXMx0vKDoCWVjSCnC8HiBYLXFq07xqhKv-hWvEoX0-m9vj5TfeRYAOwFSWfk9xD-3_yP7E7xCtaI</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lee, Jangho</creator><creator>Song, Ji-Hye</creator><creator>Chung, Min-Yu</creator><creator>Lee, Jin-Hyuk</creator><creator>Nam, Tae-Gyu</creator><creator>Park, Jae Ho</creator><creator>Hwang, Jin-Taek</creator><creator>Choi, Hyo-Kyoung</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20210901</creationdate><title>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</title><author>Lee, Jangho ; Song, Ji-Hye ; Chung, Min-Yu ; Lee, Jin-Hyuk ; Nam, Tae-Gyu ; Park, Jae Ho ; Hwang, Jin-Taek ; Choi, Hyo-Kyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Catechols - pharmacology</topic><topic>E1A-Associated p300 Protein</topic><topic>Fatty liver</topic><topic>Flavonoids</topic><topic>Gene expression</topic><topic>Hep G2 Cells</topic><topic>Histone acetyltransferase</topic><topic>Histone Acetyltransferases - antagonists & inhibitors</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Histones - metabolism</topic><topic>Homovanillic acid</topic><topic>Humans</topic><topic>Hypothalamic-pituitary-adrenal axis</topic><topic>Immunology</topic><topic>Internal Medicine</topic><topic>Large intestine</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Lipoproteins - metabolism</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Microflora</topic><topic>Non-alcoholic Fatty Liver Disease - drug therapy</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>p-Hydroxyphenylacetic acid</topic><topic>Pharmacology/Toxicology</topic><topic>Quercetin</topic><topic>Rutin</topic><topic>Rutin - metabolism</topic><topic>Rutin - therapeutic use</topic><topic>Triglycerides - metabolism</topic><topic>Vaccine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jangho</creatorcontrib><creatorcontrib>Song, Ji-Hye</creatorcontrib><creatorcontrib>Chung, Min-Yu</creatorcontrib><creatorcontrib>Lee, Jin-Hyuk</creatorcontrib><creatorcontrib>Nam, Tae-Gyu</creatorcontrib><creatorcontrib>Park, Jae Ho</creatorcontrib><creatorcontrib>Hwang, Jin-Taek</creatorcontrib><creatorcontrib>Choi, Hyo-Kyoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jangho</au><au>Song, Ji-Hye</au><au>Chung, Min-Yu</au><au>Lee, Jin-Hyuk</au><au>Nam, Tae-Gyu</au><au>Park, Jae Ho</au><au>Hwang, Jin-Taek</au><au>Choi, Hyo-Kyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</atitle><jtitle>Acta pharmacologica Sinica</jtitle><stitle>Acta Pharmacol Sin</stitle><addtitle>Acta Pharmacol Sin</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>42</volume><issue>9</issue><spage>1449</spage><epage>1460</epage><pages>1449-1460</pages><issn>1671-4083</issn><eissn>1745-7254</eissn><abstract>3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In
ob/ob
mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>33303988</pmid><doi>10.1038/s41401-020-00571-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-4083 |
ispartof | Acta pharmacologica Sinica, 2021-09, Vol.42 (9), p.1449-1460 |
issn | 1671-4083 1745-7254 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8379200 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Animal models Animals Biomedical and Life Sciences Biomedicine Body fat Body weight Catechols - pharmacology E1A-Associated p300 Protein Fatty liver Flavonoids Gene expression Hep G2 Cells Histone acetyltransferase Histone Acetyltransferases - antagonists & inhibitors Histone Acetyltransferases - metabolism Histones - metabolism Homovanillic acid Humans Hypothalamic-pituitary-adrenal axis Immunology Internal Medicine Large intestine Lipids Lipogenesis Lipoproteins - metabolism Liver Liver diseases Male Medical Microbiology Mice Microflora Non-alcoholic Fatty Liver Disease - drug therapy Non-alcoholic Fatty Liver Disease - metabolism p-Hydroxyphenylacetic acid Pharmacology/Toxicology Quercetin Rutin Rutin - metabolism Rutin - therapeutic use Triglycerides - metabolism Vaccine |
title | 3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3,4-dihydroxytoluene,%20a%20metabolite%20of%20rutin,%20suppresses%20the%20progression%20of%20nonalcoholic%20fatty%20liver%20disease%20in%20mice%20by%20inhibiting%20p300%20histone%20acetyltransferase%20activity&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=Lee,%20Jangho&rft.date=2021-09-01&rft.volume=42&rft.issue=9&rft.spage=1449&rft.epage=1460&rft.pages=1449-1460&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1038/s41401-020-00571-7&rft_dat=%3Cproquest_pubme%3E2563062494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563062494&rft_id=info:pmid/33303988&rfr_iscdi=true |