3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity

3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta pharmacologica Sinica 2021-09, Vol.42 (9), p.1449-1460
Hauptverfasser: Lee, Jangho, Song, Ji-Hye, Chung, Min-Yu, Lee, Jin-Hyuk, Nam, Tae-Gyu, Park, Jae Ho, Hwang, Jin-Taek, Choi, Hyo-Kyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1460
container_issue 9
container_start_page 1449
container_title Acta pharmacologica Sinica
container_volume 42
creator Lee, Jangho
Song, Ji-Hye
Chung, Min-Yu
Lee, Jin-Hyuk
Nam, Tae-Gyu
Park, Jae Ho
Hwang, Jin-Taek
Choi, Hyo-Kyoung
description 3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In ob/ob mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.
doi_str_mv 10.1038/s41401-020-00571-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8379200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563062494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</originalsourceid><addsrcrecordid>eNp9UU1v1TAQjBAVLYU_wAFZ4vpC_ZXYuSChqgWkSlzgbNnO5sVVnh1s54n8JP4lDq8UuHDaXe_M7MhTVa8Ifkswk1eJE45JjSmuMW4EqcWT6oII3tSCNvxp6dvyyLFk59XzlO4xZpSR7ll1zhjDrJPyovrBdrzu3bj2MXxfc5gW8LBDGh0gaxMmlwGFAcUlO79DaZnnCClBQnkENMew30YX_AbywevJhrGwLBp0ziua3BEi6l0CnQA5jw7OAjJraUdnXBHdo5lhjEaXcvCAtIW8TjlqnwaIG0nb7I4ury-qs0FPCV4-1Mvq6-3Nl-uP9d3nD5-u39_Vlguea9O0xrSWMKCSksE0oE3bUm70QLmkhpCBUNm1VvdCcKpxY6UdLGguhSEUs8vq3Ul3XswBegu-uJnUHN1Bx1UF7dS_G-9GtQ9HJZnoKN4E3jwIxPBtgZTVfVhi-ZqkaNMyXMx0vKDoCWVjSCnC8HiBYLXFq07xqhKv-hWvEoX0-m9vj5TfeRYAOwFSWfk9xD-3_yP7E7xCtaI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563062494</pqid></control><display><type>article</type><title>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lee, Jangho ; Song, Ji-Hye ; Chung, Min-Yu ; Lee, Jin-Hyuk ; Nam, Tae-Gyu ; Park, Jae Ho ; Hwang, Jin-Taek ; Choi, Hyo-Kyoung</creator><creatorcontrib>Lee, Jangho ; Song, Ji-Hye ; Chung, Min-Yu ; Lee, Jin-Hyuk ; Nam, Tae-Gyu ; Park, Jae Ho ; Hwang, Jin-Taek ; Choi, Hyo-Kyoung</creatorcontrib><description>3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In ob/ob mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.</description><identifier>ISSN: 1671-4083</identifier><identifier>EISSN: 1745-7254</identifier><identifier>DOI: 10.1038/s41401-020-00571-7</identifier><identifier>PMID: 33303988</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Animal models ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Body fat ; Body weight ; Catechols - pharmacology ; E1A-Associated p300 Protein ; Fatty liver ; Flavonoids ; Gene expression ; Hep G2 Cells ; Histone acetyltransferase ; Histone Acetyltransferases - antagonists &amp; inhibitors ; Histone Acetyltransferases - metabolism ; Histones - metabolism ; Homovanillic acid ; Humans ; Hypothalamic-pituitary-adrenal axis ; Immunology ; Internal Medicine ; Large intestine ; Lipids ; Lipogenesis ; Lipoproteins - metabolism ; Liver ; Liver diseases ; Male ; Medical Microbiology ; Mice ; Microflora ; Non-alcoholic Fatty Liver Disease - drug therapy ; Non-alcoholic Fatty Liver Disease - metabolism ; p-Hydroxyphenylacetic acid ; Pharmacology/Toxicology ; Quercetin ; Rutin ; Rutin - metabolism ; Rutin - therapeutic use ; Triglycerides - metabolism ; Vaccine</subject><ispartof>Acta pharmacologica Sinica, 2021-09, Vol.42 (9), p.1449-1460</ispartof><rights>CPS and SIMM 2020</rights><rights>2020. CPS and SIMM.</rights><rights>CPS and SIMM 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</citedby><cites>FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379200/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379200/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33303988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jangho</creatorcontrib><creatorcontrib>Song, Ji-Hye</creatorcontrib><creatorcontrib>Chung, Min-Yu</creatorcontrib><creatorcontrib>Lee, Jin-Hyuk</creatorcontrib><creatorcontrib>Nam, Tae-Gyu</creatorcontrib><creatorcontrib>Park, Jae Ho</creatorcontrib><creatorcontrib>Hwang, Jin-Taek</creatorcontrib><creatorcontrib>Choi, Hyo-Kyoung</creatorcontrib><title>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</title><title>Acta pharmacologica Sinica</title><addtitle>Acta Pharmacol Sin</addtitle><addtitle>Acta Pharmacol Sin</addtitle><description>3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In ob/ob mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.</description><subject>Animal models</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Catechols - pharmacology</subject><subject>E1A-Associated p300 Protein</subject><subject>Fatty liver</subject><subject>Flavonoids</subject><subject>Gene expression</subject><subject>Hep G2 Cells</subject><subject>Histone acetyltransferase</subject><subject>Histone Acetyltransferases - antagonists &amp; inhibitors</subject><subject>Histone Acetyltransferases - metabolism</subject><subject>Histones - metabolism</subject><subject>Homovanillic acid</subject><subject>Humans</subject><subject>Hypothalamic-pituitary-adrenal axis</subject><subject>Immunology</subject><subject>Internal Medicine</subject><subject>Large intestine</subject><subject>Lipids</subject><subject>Lipogenesis</subject><subject>Lipoproteins - metabolism</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Medical Microbiology</subject><subject>Mice</subject><subject>Microflora</subject><subject>Non-alcoholic Fatty Liver Disease - drug therapy</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>p-Hydroxyphenylacetic acid</subject><subject>Pharmacology/Toxicology</subject><subject>Quercetin</subject><subject>Rutin</subject><subject>Rutin - metabolism</subject><subject>Rutin - therapeutic use</subject><subject>Triglycerides - metabolism</subject><subject>Vaccine</subject><issn>1671-4083</issn><issn>1745-7254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UU1v1TAQjBAVLYU_wAFZ4vpC_ZXYuSChqgWkSlzgbNnO5sVVnh1s54n8JP4lDq8UuHDaXe_M7MhTVa8Ifkswk1eJE45JjSmuMW4EqcWT6oII3tSCNvxp6dvyyLFk59XzlO4xZpSR7ll1zhjDrJPyovrBdrzu3bj2MXxfc5gW8LBDGh0gaxMmlwGFAcUlO79DaZnnCClBQnkENMew30YX_AbywevJhrGwLBp0ziua3BEi6l0CnQA5jw7OAjJraUdnXBHdo5lhjEaXcvCAtIW8TjlqnwaIG0nb7I4ury-qs0FPCV4-1Mvq6-3Nl-uP9d3nD5-u39_Vlguea9O0xrSWMKCSksE0oE3bUm70QLmkhpCBUNm1VvdCcKpxY6UdLGguhSEUs8vq3Ul3XswBegu-uJnUHN1Bx1UF7dS_G-9GtQ9HJZnoKN4E3jwIxPBtgZTVfVhi-ZqkaNMyXMx0vKDoCWVjSCnC8HiBYLXFq07xqhKv-hWvEoX0-m9vj5TfeRYAOwFSWfk9xD-3_yP7E7xCtaI</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lee, Jangho</creator><creator>Song, Ji-Hye</creator><creator>Chung, Min-Yu</creator><creator>Lee, Jin-Hyuk</creator><creator>Nam, Tae-Gyu</creator><creator>Park, Jae Ho</creator><creator>Hwang, Jin-Taek</creator><creator>Choi, Hyo-Kyoung</creator><general>Springer Singapore</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20210901</creationdate><title>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</title><author>Lee, Jangho ; Song, Ji-Hye ; Chung, Min-Yu ; Lee, Jin-Hyuk ; Nam, Tae-Gyu ; Park, Jae Ho ; Hwang, Jin-Taek ; Choi, Hyo-Kyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b56bb6c13e2821fb5eab6624baf2482b11f12896cad7742a05c8cfcea487b1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Catechols - pharmacology</topic><topic>E1A-Associated p300 Protein</topic><topic>Fatty liver</topic><topic>Flavonoids</topic><topic>Gene expression</topic><topic>Hep G2 Cells</topic><topic>Histone acetyltransferase</topic><topic>Histone Acetyltransferases - antagonists &amp; inhibitors</topic><topic>Histone Acetyltransferases - metabolism</topic><topic>Histones - metabolism</topic><topic>Homovanillic acid</topic><topic>Humans</topic><topic>Hypothalamic-pituitary-adrenal axis</topic><topic>Immunology</topic><topic>Internal Medicine</topic><topic>Large intestine</topic><topic>Lipids</topic><topic>Lipogenesis</topic><topic>Lipoproteins - metabolism</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Medical Microbiology</topic><topic>Mice</topic><topic>Microflora</topic><topic>Non-alcoholic Fatty Liver Disease - drug therapy</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>p-Hydroxyphenylacetic acid</topic><topic>Pharmacology/Toxicology</topic><topic>Quercetin</topic><topic>Rutin</topic><topic>Rutin - metabolism</topic><topic>Rutin - therapeutic use</topic><topic>Triglycerides - metabolism</topic><topic>Vaccine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jangho</creatorcontrib><creatorcontrib>Song, Ji-Hye</creatorcontrib><creatorcontrib>Chung, Min-Yu</creatorcontrib><creatorcontrib>Lee, Jin-Hyuk</creatorcontrib><creatorcontrib>Nam, Tae-Gyu</creatorcontrib><creatorcontrib>Park, Jae Ho</creatorcontrib><creatorcontrib>Hwang, Jin-Taek</creatorcontrib><creatorcontrib>Choi, Hyo-Kyoung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta pharmacologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jangho</au><au>Song, Ji-Hye</au><au>Chung, Min-Yu</au><au>Lee, Jin-Hyuk</au><au>Nam, Tae-Gyu</au><au>Park, Jae Ho</au><au>Hwang, Jin-Taek</au><au>Choi, Hyo-Kyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity</atitle><jtitle>Acta pharmacologica Sinica</jtitle><stitle>Acta Pharmacol Sin</stitle><addtitle>Acta Pharmacol Sin</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>42</volume><issue>9</issue><spage>1449</spage><epage>1460</epage><pages>1449-1460</pages><issn>1671-4083</issn><eissn>1745-7254</eissn><abstract>3,3′,4′,5,7-Pentahydroxyflavone-3-rhamnoglucoside (rutin) is a flavonoid with a wide range of pharmacological activities. Dietary rutin is hardly absorbed because the microflora in the large intestine metabolize rutin into a variety of compounds including quercetin and phenol derivatives such as 3,4-dihydroxyphenolacetic acid (DHPAA), 3,4-dihydroxytoluene (DHT), 3,4-hydroxyphenylacetic acid (HPAA) and homovanillic acid (HVA). We examined the potential of rutin and its metabolites as novel histone acetyltransferase (HAT) inhibitors. DHPAA, HPAA and DHT at the concentration of 25 μM significantly inhibited in vitro HAT activity with DHT having the strongest inhibitory activity. Furthermore, DHT was shown to be a highly efficient inhibitor of p300 HAT activity, which corresponded with its high degree of inhibition on intracellular lipid accumulation in HepG2 cells. Docking simulation revealed that DHT was bound to the p300 catalytic pocket, bromodomain. Drug affinity responsive target stability (DARTS) analysis further supported the possibility of direct binding between DHT and p300. In HepG2 cells, DHT concentration-dependently abrogated p300-histone binding and induced hypoacetylation of histone subunits H3K9, H3K36, H4K8 and H4K16, eventually leading to the downregulation of lipogenesis-related genes and attenuating lipid accumulation. In ob/ob mice, administration of DHT (10, 20 mg/kg, iv, every other day for 6 weeks) dose-dependently improved the NAFLD pathogenic features including body weight, liver mass, fat mass, lipid accumulation in the liver, and biochemical blood parameters, accompanied by the decreased mRNA expression of lipogenic genes in the liver. Our results demonstrate that DHT, a novel p300 histone acetyltransferase inhibitor, may be a potential preventive or therapeutic agent for NAFLD.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><pmid>33303988</pmid><doi>10.1038/s41401-020-00571-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1671-4083
ispartof Acta pharmacologica Sinica, 2021-09, Vol.42 (9), p.1449-1460
issn 1671-4083
1745-7254
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8379200
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animal models
Animals
Biomedical and Life Sciences
Biomedicine
Body fat
Body weight
Catechols - pharmacology
E1A-Associated p300 Protein
Fatty liver
Flavonoids
Gene expression
Hep G2 Cells
Histone acetyltransferase
Histone Acetyltransferases - antagonists & inhibitors
Histone Acetyltransferases - metabolism
Histones - metabolism
Homovanillic acid
Humans
Hypothalamic-pituitary-adrenal axis
Immunology
Internal Medicine
Large intestine
Lipids
Lipogenesis
Lipoproteins - metabolism
Liver
Liver diseases
Male
Medical Microbiology
Mice
Microflora
Non-alcoholic Fatty Liver Disease - drug therapy
Non-alcoholic Fatty Liver Disease - metabolism
p-Hydroxyphenylacetic acid
Pharmacology/Toxicology
Quercetin
Rutin
Rutin - metabolism
Rutin - therapeutic use
Triglycerides - metabolism
Vaccine
title 3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3,4-dihydroxytoluene,%20a%20metabolite%20of%20rutin,%20suppresses%20the%20progression%20of%20nonalcoholic%20fatty%20liver%20disease%20in%20mice%20by%20inhibiting%20p300%20histone%20acetyltransferase%20activity&rft.jtitle=Acta%20pharmacologica%20Sinica&rft.au=Lee,%20Jangho&rft.date=2021-09-01&rft.volume=42&rft.issue=9&rft.spage=1449&rft.epage=1460&rft.pages=1449-1460&rft.issn=1671-4083&rft.eissn=1745-7254&rft_id=info:doi/10.1038/s41401-020-00571-7&rft_dat=%3Cproquest_pubme%3E2563062494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563062494&rft_id=info:pmid/33303988&rfr_iscdi=true