Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge
Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data s...
Gespeichert in:
Veröffentlicht in: | AMIA Summits on Translational Science proceedings 2021, Vol.2021, p.132-141 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | |
container_start_page | 132 |
container_title | AMIA Summits on Translational Science proceedings |
container_volume | 2021 |
creator | Chakraborty, Prithwish Codella, James Madan, Piyush Li, Ying Huang, Hu Park, Yoonyoung Yan, Chao Zhang, Ziqi Gao, Cheng Nyemba, Steve Min, Xu Basak, Sanjib Ghalwash, Mohamed Shahn, Zach Suryanarayanan, Parthasararathy Buleje, Italo Harrer, Shannon Miller, Sarah Rajmane, Amol Walsh, Colin Wanderer, Jonathan Reed, Gigi Yuen Ng, Kenney Sow, Daby Malin, Bradley A |
description | Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566259257</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1113-f982f8d5e82ac7ad07a4684d09b88798afc1d8cdbcec0ba27285b8a45deff6f13</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhCMkRKvSV0A-comU-Cd2LkilLRRRAUJwDo69Tg1pHOykFW9PEAXBXvYwq29m9iga45SRmCYZGUXTEF6TYSjNckZPohGhlPEU83H0cllDo21TodvG7WvQFSDboAVAix5B9d5D06E76PbOvwVknEczvQMfAC13X9KDB21VZ12DZIdWLrS2kzVa2KA20ldwGh0bWQeYHvYker5aPs1X8fr--mY-W8dtmqYkNrnARmgGAkvFpU64pJmgOslLIXgupFGpFkqXClRSSsyxYKWQlGkwJjMpmUQX39y2L7eg1ZDNy7povd1K_1E4aYv_SmM3ReV2hSBcZIQMgPMDwLv3HkJXbIcOUNeyAdeHArMswyzHjA-nZ3-9fk1-3ko-Ae7BdmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566259257</pqid></control><display><type>article</type><title>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chakraborty, Prithwish ; Codella, James ; Madan, Piyush ; Li, Ying ; Huang, Hu ; Park, Yoonyoung ; Yan, Chao ; Zhang, Ziqi ; Gao, Cheng ; Nyemba, Steve ; Min, Xu ; Basak, Sanjib ; Ghalwash, Mohamed ; Shahn, Zach ; Suryanarayanan, Parthasararathy ; Buleje, Italo ; Harrer, Shannon ; Miller, Sarah ; Rajmane, Amol ; Walsh, Colin ; Wanderer, Jonathan ; Reed, Gigi Yuen ; Ng, Kenney ; Sow, Daby ; Malin, Bradley A</creator><creatorcontrib>Chakraborty, Prithwish ; Codella, James ; Madan, Piyush ; Li, Ying ; Huang, Hu ; Park, Yoonyoung ; Yan, Chao ; Zhang, Ziqi ; Gao, Cheng ; Nyemba, Steve ; Min, Xu ; Basak, Sanjib ; Ghalwash, Mohamed ; Shahn, Zach ; Suryanarayanan, Parthasararathy ; Buleje, Italo ; Harrer, Shannon ; Miller, Sarah ; Rajmane, Amol ; Walsh, Colin ; Wanderer, Jonathan ; Reed, Gigi Yuen ; Ng, Kenney ; Sow, Daby ; Malin, Bradley A</creatorcontrib><description>Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.</description><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 34457127</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Hospitals ; Humans ; Machine Learning ; Neural Networks, Computer ; Patient Discharge</subject><ispartof>AMIA Summits on Translational Science proceedings, 2021, Vol.2021, p.132-141</ispartof><rights>2021 AMIA - All rights reserved.</rights><rights>2021 AMIA - All rights reserved. 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378633/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378633/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34457127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Prithwish</creatorcontrib><creatorcontrib>Codella, James</creatorcontrib><creatorcontrib>Madan, Piyush</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Huang, Hu</creatorcontrib><creatorcontrib>Park, Yoonyoung</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Zhang, Ziqi</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Nyemba, Steve</creatorcontrib><creatorcontrib>Min, Xu</creatorcontrib><creatorcontrib>Basak, Sanjib</creatorcontrib><creatorcontrib>Ghalwash, Mohamed</creatorcontrib><creatorcontrib>Shahn, Zach</creatorcontrib><creatorcontrib>Suryanarayanan, Parthasararathy</creatorcontrib><creatorcontrib>Buleje, Italo</creatorcontrib><creatorcontrib>Harrer, Shannon</creatorcontrib><creatorcontrib>Miller, Sarah</creatorcontrib><creatorcontrib>Rajmane, Amol</creatorcontrib><creatorcontrib>Walsh, Colin</creatorcontrib><creatorcontrib>Wanderer, Jonathan</creatorcontrib><creatorcontrib>Reed, Gigi Yuen</creatorcontrib><creatorcontrib>Ng, Kenney</creatorcontrib><creatorcontrib>Sow, Daby</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><title>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.</description><subject>Hospitals</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>Patient Discharge</subject><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1OwzAQhCMkRKvSV0A-comU-Cd2LkilLRRRAUJwDo69Tg1pHOykFW9PEAXBXvYwq29m9iga45SRmCYZGUXTEF6TYSjNckZPohGhlPEU83H0cllDo21TodvG7WvQFSDboAVAix5B9d5D06E76PbOvwVknEczvQMfAC13X9KDB21VZ12DZIdWLrS2kzVa2KA20ldwGh0bWQeYHvYker5aPs1X8fr--mY-W8dtmqYkNrnARmgGAkvFpU64pJmgOslLIXgupFGpFkqXClRSSsyxYKWQlGkwJjMpmUQX39y2L7eg1ZDNy7povd1K_1E4aYv_SmM3ReV2hSBcZIQMgPMDwLv3HkJXbIcOUNeyAdeHArMswyzHjA-nZ3-9fk1-3ko-Ae7BdmA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chakraborty, Prithwish</creator><creator>Codella, James</creator><creator>Madan, Piyush</creator><creator>Li, Ying</creator><creator>Huang, Hu</creator><creator>Park, Yoonyoung</creator><creator>Yan, Chao</creator><creator>Zhang, Ziqi</creator><creator>Gao, Cheng</creator><creator>Nyemba, Steve</creator><creator>Min, Xu</creator><creator>Basak, Sanjib</creator><creator>Ghalwash, Mohamed</creator><creator>Shahn, Zach</creator><creator>Suryanarayanan, Parthasararathy</creator><creator>Buleje, Italo</creator><creator>Harrer, Shannon</creator><creator>Miller, Sarah</creator><creator>Rajmane, Amol</creator><creator>Walsh, Colin</creator><creator>Wanderer, Jonathan</creator><creator>Reed, Gigi Yuen</creator><creator>Ng, Kenney</creator><creator>Sow, Daby</creator><creator>Malin, Bradley A</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</title><author>Chakraborty, Prithwish ; Codella, James ; Madan, Piyush ; Li, Ying ; Huang, Hu ; Park, Yoonyoung ; Yan, Chao ; Zhang, Ziqi ; Gao, Cheng ; Nyemba, Steve ; Min, Xu ; Basak, Sanjib ; Ghalwash, Mohamed ; Shahn, Zach ; Suryanarayanan, Parthasararathy ; Buleje, Italo ; Harrer, Shannon ; Miller, Sarah ; Rajmane, Amol ; Walsh, Colin ; Wanderer, Jonathan ; Reed, Gigi Yuen ; Ng, Kenney ; Sow, Daby ; Malin, Bradley A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1113-f982f8d5e82ac7ad07a4684d09b88798afc1d8cdbcec0ba27285b8a45deff6f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Hospitals</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>Patient Discharge</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Prithwish</creatorcontrib><creatorcontrib>Codella, James</creatorcontrib><creatorcontrib>Madan, Piyush</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Huang, Hu</creatorcontrib><creatorcontrib>Park, Yoonyoung</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Zhang, Ziqi</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Nyemba, Steve</creatorcontrib><creatorcontrib>Min, Xu</creatorcontrib><creatorcontrib>Basak, Sanjib</creatorcontrib><creatorcontrib>Ghalwash, Mohamed</creatorcontrib><creatorcontrib>Shahn, Zach</creatorcontrib><creatorcontrib>Suryanarayanan, Parthasararathy</creatorcontrib><creatorcontrib>Buleje, Italo</creatorcontrib><creatorcontrib>Harrer, Shannon</creatorcontrib><creatorcontrib>Miller, Sarah</creatorcontrib><creatorcontrib>Rajmane, Amol</creatorcontrib><creatorcontrib>Walsh, Colin</creatorcontrib><creatorcontrib>Wanderer, Jonathan</creatorcontrib><creatorcontrib>Reed, Gigi Yuen</creatorcontrib><creatorcontrib>Ng, Kenney</creatorcontrib><creatorcontrib>Sow, Daby</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Prithwish</au><au>Codella, James</au><au>Madan, Piyush</au><au>Li, Ying</au><au>Huang, Hu</au><au>Park, Yoonyoung</au><au>Yan, Chao</au><au>Zhang, Ziqi</au><au>Gao, Cheng</au><au>Nyemba, Steve</au><au>Min, Xu</au><au>Basak, Sanjib</au><au>Ghalwash, Mohamed</au><au>Shahn, Zach</au><au>Suryanarayanan, Parthasararathy</au><au>Buleje, Italo</au><au>Harrer, Shannon</au><au>Miller, Sarah</au><au>Rajmane, Amol</au><au>Walsh, Colin</au><au>Wanderer, Jonathan</au><au>Reed, Gigi Yuen</au><au>Ng, Kenney</au><au>Sow, Daby</au><au>Malin, Bradley A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>132</spage><epage>141</epage><pages>132-141</pages><eissn>2153-4063</eissn><abstract>Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>34457127</pmid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2153-4063 |
ispartof | AMIA Summits on Translational Science proceedings, 2021, Vol.2021, p.132-141 |
issn | 2153-4063 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378633 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Hospitals Humans Machine Learning Neural Networks, Computer Patient Discharge |
title | Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blending%20Knowledge%20in%20Deep%20Recurrent%20Networks%20for%20Adverse%20Event%20Prediction%20at%20Hospital%20Discharge&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Chakraborty,%20Prithwish&rft.date=2021&rft.volume=2021&rft.spage=132&rft.epage=141&rft.pages=132-141&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2566259257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566259257&rft_id=info:pmid/34457127&rfr_iscdi=true |