Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge

Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA Summits on Translational Science proceedings 2021, Vol.2021, p.132-141
Hauptverfasser: Chakraborty, Prithwish, Codella, James, Madan, Piyush, Li, Ying, Huang, Hu, Park, Yoonyoung, Yan, Chao, Zhang, Ziqi, Gao, Cheng, Nyemba, Steve, Min, Xu, Basak, Sanjib, Ghalwash, Mohamed, Shahn, Zach, Suryanarayanan, Parthasararathy, Buleje, Italo, Harrer, Shannon, Miller, Sarah, Rajmane, Amol, Walsh, Colin, Wanderer, Jonathan, Reed, Gigi Yuen, Ng, Kenney, Sow, Daby, Malin, Bradley A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue
container_start_page 132
container_title AMIA Summits on Translational Science proceedings
container_volume 2021
creator Chakraborty, Prithwish
Codella, James
Madan, Piyush
Li, Ying
Huang, Hu
Park, Yoonyoung
Yan, Chao
Zhang, Ziqi
Gao, Cheng
Nyemba, Steve
Min, Xu
Basak, Sanjib
Ghalwash, Mohamed
Shahn, Zach
Suryanarayanan, Parthasararathy
Buleje, Italo
Harrer, Shannon
Miller, Sarah
Rajmane, Amol
Walsh, Colin
Wanderer, Jonathan
Reed, Gigi Yuen
Ng, Kenney
Sow, Daby
Malin, Bradley A
description Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566259257</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1113-f982f8d5e82ac7ad07a4684d09b88798afc1d8cdbcec0ba27285b8a45deff6f13</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhCMkRKvSV0A-comU-Cd2LkilLRRRAUJwDo69Tg1pHOykFW9PEAXBXvYwq29m9iga45SRmCYZGUXTEF6TYSjNckZPohGhlPEU83H0cllDo21TodvG7WvQFSDboAVAix5B9d5D06E76PbOvwVknEczvQMfAC13X9KDB21VZ12DZIdWLrS2kzVa2KA20ldwGh0bWQeYHvYker5aPs1X8fr--mY-W8dtmqYkNrnARmgGAkvFpU64pJmgOslLIXgupFGpFkqXClRSSsyxYKWQlGkwJjMpmUQX39y2L7eg1ZDNy7povd1K_1E4aYv_SmM3ReV2hSBcZIQMgPMDwLv3HkJXbIcOUNeyAdeHArMswyzHjA-nZ3-9fk1-3ko-Ae7BdmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566259257</pqid></control><display><type>article</type><title>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chakraborty, Prithwish ; Codella, James ; Madan, Piyush ; Li, Ying ; Huang, Hu ; Park, Yoonyoung ; Yan, Chao ; Zhang, Ziqi ; Gao, Cheng ; Nyemba, Steve ; Min, Xu ; Basak, Sanjib ; Ghalwash, Mohamed ; Shahn, Zach ; Suryanarayanan, Parthasararathy ; Buleje, Italo ; Harrer, Shannon ; Miller, Sarah ; Rajmane, Amol ; Walsh, Colin ; Wanderer, Jonathan ; Reed, Gigi Yuen ; Ng, Kenney ; Sow, Daby ; Malin, Bradley A</creator><creatorcontrib>Chakraborty, Prithwish ; Codella, James ; Madan, Piyush ; Li, Ying ; Huang, Hu ; Park, Yoonyoung ; Yan, Chao ; Zhang, Ziqi ; Gao, Cheng ; Nyemba, Steve ; Min, Xu ; Basak, Sanjib ; Ghalwash, Mohamed ; Shahn, Zach ; Suryanarayanan, Parthasararathy ; Buleje, Italo ; Harrer, Shannon ; Miller, Sarah ; Rajmane, Amol ; Walsh, Colin ; Wanderer, Jonathan ; Reed, Gigi Yuen ; Ng, Kenney ; Sow, Daby ; Malin, Bradley A</creatorcontrib><description>Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.</description><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 34457127</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Hospitals ; Humans ; Machine Learning ; Neural Networks, Computer ; Patient Discharge</subject><ispartof>AMIA Summits on Translational Science proceedings, 2021, Vol.2021, p.132-141</ispartof><rights>2021 AMIA - All rights reserved.</rights><rights>2021 AMIA - All rights reserved. 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378633/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378633/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4009,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34457127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Prithwish</creatorcontrib><creatorcontrib>Codella, James</creatorcontrib><creatorcontrib>Madan, Piyush</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Huang, Hu</creatorcontrib><creatorcontrib>Park, Yoonyoung</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Zhang, Ziqi</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Nyemba, Steve</creatorcontrib><creatorcontrib>Min, Xu</creatorcontrib><creatorcontrib>Basak, Sanjib</creatorcontrib><creatorcontrib>Ghalwash, Mohamed</creatorcontrib><creatorcontrib>Shahn, Zach</creatorcontrib><creatorcontrib>Suryanarayanan, Parthasararathy</creatorcontrib><creatorcontrib>Buleje, Italo</creatorcontrib><creatorcontrib>Harrer, Shannon</creatorcontrib><creatorcontrib>Miller, Sarah</creatorcontrib><creatorcontrib>Rajmane, Amol</creatorcontrib><creatorcontrib>Walsh, Colin</creatorcontrib><creatorcontrib>Wanderer, Jonathan</creatorcontrib><creatorcontrib>Reed, Gigi Yuen</creatorcontrib><creatorcontrib>Ng, Kenney</creatorcontrib><creatorcontrib>Sow, Daby</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><title>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.</description><subject>Hospitals</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Neural Networks, Computer</subject><subject>Patient Discharge</subject><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1OwzAQhCMkRKvSV0A-comU-Cd2LkilLRRRAUJwDo69Tg1pHOykFW9PEAXBXvYwq29m9iga45SRmCYZGUXTEF6TYSjNckZPohGhlPEU83H0cllDo21TodvG7WvQFSDboAVAix5B9d5D06E76PbOvwVknEczvQMfAC13X9KDB21VZ12DZIdWLrS2kzVa2KA20ldwGh0bWQeYHvYker5aPs1X8fr--mY-W8dtmqYkNrnARmgGAkvFpU64pJmgOslLIXgupFGpFkqXClRSSsyxYKWQlGkwJjMpmUQX39y2L7eg1ZDNy7povd1K_1E4aYv_SmM3ReV2hSBcZIQMgPMDwLv3HkJXbIcOUNeyAdeHArMswyzHjA-nZ3-9fk1-3ko-Ae7BdmA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chakraborty, Prithwish</creator><creator>Codella, James</creator><creator>Madan, Piyush</creator><creator>Li, Ying</creator><creator>Huang, Hu</creator><creator>Park, Yoonyoung</creator><creator>Yan, Chao</creator><creator>Zhang, Ziqi</creator><creator>Gao, Cheng</creator><creator>Nyemba, Steve</creator><creator>Min, Xu</creator><creator>Basak, Sanjib</creator><creator>Ghalwash, Mohamed</creator><creator>Shahn, Zach</creator><creator>Suryanarayanan, Parthasararathy</creator><creator>Buleje, Italo</creator><creator>Harrer, Shannon</creator><creator>Miller, Sarah</creator><creator>Rajmane, Amol</creator><creator>Walsh, Colin</creator><creator>Wanderer, Jonathan</creator><creator>Reed, Gigi Yuen</creator><creator>Ng, Kenney</creator><creator>Sow, Daby</creator><creator>Malin, Bradley A</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2021</creationdate><title>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</title><author>Chakraborty, Prithwish ; Codella, James ; Madan, Piyush ; Li, Ying ; Huang, Hu ; Park, Yoonyoung ; Yan, Chao ; Zhang, Ziqi ; Gao, Cheng ; Nyemba, Steve ; Min, Xu ; Basak, Sanjib ; Ghalwash, Mohamed ; Shahn, Zach ; Suryanarayanan, Parthasararathy ; Buleje, Italo ; Harrer, Shannon ; Miller, Sarah ; Rajmane, Amol ; Walsh, Colin ; Wanderer, Jonathan ; Reed, Gigi Yuen ; Ng, Kenney ; Sow, Daby ; Malin, Bradley A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1113-f982f8d5e82ac7ad07a4684d09b88798afc1d8cdbcec0ba27285b8a45deff6f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Hospitals</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Neural Networks, Computer</topic><topic>Patient Discharge</topic><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Prithwish</creatorcontrib><creatorcontrib>Codella, James</creatorcontrib><creatorcontrib>Madan, Piyush</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Huang, Hu</creatorcontrib><creatorcontrib>Park, Yoonyoung</creatorcontrib><creatorcontrib>Yan, Chao</creatorcontrib><creatorcontrib>Zhang, Ziqi</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Nyemba, Steve</creatorcontrib><creatorcontrib>Min, Xu</creatorcontrib><creatorcontrib>Basak, Sanjib</creatorcontrib><creatorcontrib>Ghalwash, Mohamed</creatorcontrib><creatorcontrib>Shahn, Zach</creatorcontrib><creatorcontrib>Suryanarayanan, Parthasararathy</creatorcontrib><creatorcontrib>Buleje, Italo</creatorcontrib><creatorcontrib>Harrer, Shannon</creatorcontrib><creatorcontrib>Miller, Sarah</creatorcontrib><creatorcontrib>Rajmane, Amol</creatorcontrib><creatorcontrib>Walsh, Colin</creatorcontrib><creatorcontrib>Wanderer, Jonathan</creatorcontrib><creatorcontrib>Reed, Gigi Yuen</creatorcontrib><creatorcontrib>Ng, Kenney</creatorcontrib><creatorcontrib>Sow, Daby</creatorcontrib><creatorcontrib>Malin, Bradley A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Prithwish</au><au>Codella, James</au><au>Madan, Piyush</au><au>Li, Ying</au><au>Huang, Hu</au><au>Park, Yoonyoung</au><au>Yan, Chao</au><au>Zhang, Ziqi</au><au>Gao, Cheng</au><au>Nyemba, Steve</au><au>Min, Xu</au><au>Basak, Sanjib</au><au>Ghalwash, Mohamed</au><au>Shahn, Zach</au><au>Suryanarayanan, Parthasararathy</au><au>Buleje, Italo</au><au>Harrer, Shannon</au><au>Miller, Sarah</au><au>Rajmane, Amol</au><au>Walsh, Colin</au><au>Wanderer, Jonathan</au><au>Reed, Gigi Yuen</au><au>Ng, Kenney</au><au>Sow, Daby</au><au>Malin, Bradley A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>132</spage><epage>141</epage><pages>132-141</pages><eissn>2153-4063</eissn><abstract>Deep learning architectures have an extremely high-capacity for modeling complex data in a wide variety of domains. However, these architectures have been limited in their ability to support complex prediction problems using insurance claims data, such as readmission at 30 days, mainly due to data sparsity issue. Consequently, classical machine learning methods, especially those that embed domain knowledge in handcrafted features, are often on par with, and sometimes outperform, deep learning approaches. In this paper, we illustrate how the potential of deep learning can be achieved by blending domain knowledge within deep learning architectures to predict adverse events at hospital discharge, including readmissions. More specifically, we introduce a learning architecture that fuses a representation of patient data computed by a self-attention based recurrent neural network, with clinically relevant features. We conduct extensive experiments on a large claims dataset and show that the blended method outperforms the standard machine learning approaches.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>34457127</pmid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2153-4063
ispartof AMIA Summits on Translational Science proceedings, 2021, Vol.2021, p.132-141
issn 2153-4063
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8378633
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Hospitals
Humans
Machine Learning
Neural Networks, Computer
Patient Discharge
title Blending Knowledge in Deep Recurrent Networks for Adverse Event Prediction at Hospital Discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A17%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blending%20Knowledge%20in%20Deep%20Recurrent%20Networks%20for%20Adverse%20Event%20Prediction%20at%20Hospital%20Discharge&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Chakraborty,%20Prithwish&rft.date=2021&rft.volume=2021&rft.spage=132&rft.epage=141&rft.pages=132-141&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2566259257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566259257&rft_id=info:pmid/34457127&rfr_iscdi=true