Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation

Purpose To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroradiology 2021-09, Vol.63 (9), p.1451-1462
Hauptverfasser: Yasaka, Koichiro, Kamagata, Koji, Ogawa, Takashi, Hatano, Taku, Takeshige-Amano, Haruka, Ogaki, Kotaro, Andica, Christina, Akai, Hiroyuki, Kunimatsu, Akira, Uchida, Wataru, Hattori, Nobutaka, Aoki, Shigeki, Abe, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1462
container_issue 9
container_start_page 1451
container_title Neuroradiology
container_volume 63
creator Yasaka, Koichiro
Kamagata, Koji
Ogawa, Takashi
Hatano, Taku
Takeshige-Amano, Haruka
Ogaki, Kotaro
Andica, Christina
Akai, Hiroyuki
Kunimatsu, Akira
Uchida, Wataru
Hattori, Nobutaka
Aoki, Shigeki
Abe, Osamu
description Purpose To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI. Methods In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models. Results CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and g -ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test, p  
doi_str_mv 10.1007/s00234-021-02648-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480283473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</originalsourceid><addsrcrecordid>eNp9kb2O1TAQhS0EYi8LL0CBLNHQBPx344QCabXiT1oJCqitiTPJ9ZLYF9vZhY53oOL1eBJ8ybL8FBSWi_PNmTk6hNzn7DFnTD9JjAmpKiZ4ebVqKnWDbLiSouKtYDfJpuhNJVvFjsidlM4ZY1JLfZscSakazjTfkK9vIX5wPgX__cu3RHuXEBI-pT3ink4I0Ts_0kuXdxToHiLMmDFWl-jGXcaephwXm5cIE7XBe7Q5zEhnyNF9okOIxRFGH5JLFHxPPa6oi3Zx-bAuxB4jdf4CU3YjZBf8XXJrgCnhvav_mLx_8fzd6avq7M3L16cnZ5VVWuUK5TB0HFmzbbjoO9W1aiuBobLc6l7UAqBtbMM6zlpUdcs49ghSD2BlU9etPCbPVt_90s3YW_S5HGf20c0QP5sAzvyteLczY7gwjdS15qwYPLoyiOHjUgKY2SWL0wQew5KMUE1pQCotC_rwH_Q8LNGXeEZsa1FvuRaqUGKlbAwpRRyuj-HMHDo3a-emdG5-dm4OQw_-jHE98qvkAsgVSEXyI8bfu_9j-wPLqLzr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562651724</pqid></control><display><type>article</type><title>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yasaka, Koichiro ; Kamagata, Koji ; Ogawa, Takashi ; Hatano, Taku ; Takeshige-Amano, Haruka ; Ogaki, Kotaro ; Andica, Christina ; Akai, Hiroyuki ; Kunimatsu, Akira ; Uchida, Wataru ; Hattori, Nobutaka ; Aoki, Shigeki ; Abe, Osamu</creator><creatorcontrib>Yasaka, Koichiro ; Kamagata, Koji ; Ogawa, Takashi ; Hatano, Taku ; Takeshige-Amano, Haruka ; Ogaki, Kotaro ; Andica, Christina ; Akai, Hiroyuki ; Kunimatsu, Akira ; Uchida, Wataru ; Hattori, Nobutaka ; Aoki, Shigeki ; Abe, Osamu</creatorcontrib><description>Purpose To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI. Methods In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models. Results CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and g -ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test, p  &lt; 0.0001). Alterations of neural connections between the basal ganglia and cerebellum were indicated by applying Grad-CAM to the NODDI- and g -ratio-weighted matrices. Conclusion Patients with PD can be differentiated from healthy controls by applying the deep learning technique to the parameter-weighted connectome matrices, and neural circuit disorders including those between the basal ganglia on one side and the cerebellum on the contralateral side were visualized.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-021-02648-4</identifier><identifier>PMID: 33481071</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Artificial neural networks ; Basal ganglia ; Cerebellum ; Circuits ; Connectome ; Deep Learning ; Diagnostic Neuroradiology ; Diffusion Tensor Imaging ; Disorders ; G ratio ; Ganglia ; Humans ; Imaging ; Kurtosis ; Magnetic resonance imaging ; Mathematical models ; Medical diagnosis ; Medical imaging ; Medicine ; Medicine &amp; Public Health ; Movement disorders ; Neural networks ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Parameters ; Parkinson Disease - diagnostic imaging ; Parkinson's disease ; Prospective Studies ; Radiology</subject><ispartof>Neuroradiology, 2021-09, Vol.63 (9), p.1451-1462</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</citedby><cites>FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</cites><orcidid>0000-0002-0324-6562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-021-02648-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-021-02648-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33481071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yasaka, Koichiro</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Ogawa, Takashi</creatorcontrib><creatorcontrib>Hatano, Taku</creatorcontrib><creatorcontrib>Takeshige-Amano, Haruka</creatorcontrib><creatorcontrib>Ogaki, Kotaro</creatorcontrib><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Akai, Hiroyuki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Uchida, Wataru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Abe, Osamu</creatorcontrib><title>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Purpose To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI. Methods In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models. Results CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and g -ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test, p  &lt; 0.0001). Alterations of neural connections between the basal ganglia and cerebellum were indicated by applying Grad-CAM to the NODDI- and g -ratio-weighted matrices. Conclusion Patients with PD can be differentiated from healthy controls by applying the deep learning technique to the parameter-weighted connectome matrices, and neural circuit disorders including those between the basal ganglia on one side and the cerebellum on the contralateral side were visualized.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Basal ganglia</subject><subject>Cerebellum</subject><subject>Circuits</subject><subject>Connectome</subject><subject>Deep Learning</subject><subject>Diagnostic Neuroradiology</subject><subject>Diffusion Tensor Imaging</subject><subject>Disorders</subject><subject>G ratio</subject><subject>Ganglia</subject><subject>Humans</subject><subject>Imaging</subject><subject>Kurtosis</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Movement disorders</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Parameters</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson's disease</subject><subject>Prospective Studies</subject><subject>Radiology</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kb2O1TAQhS0EYi8LL0CBLNHQBPx344QCabXiT1oJCqitiTPJ9ZLYF9vZhY53oOL1eBJ8ybL8FBSWi_PNmTk6hNzn7DFnTD9JjAmpKiZ4ebVqKnWDbLiSouKtYDfJpuhNJVvFjsidlM4ZY1JLfZscSakazjTfkK9vIX5wPgX__cu3RHuXEBI-pT3ink4I0Ts_0kuXdxToHiLMmDFWl-jGXcaephwXm5cIE7XBe7Q5zEhnyNF9okOIxRFGH5JLFHxPPa6oi3Zx-bAuxB4jdf4CU3YjZBf8XXJrgCnhvav_mLx_8fzd6avq7M3L16cnZ5VVWuUK5TB0HFmzbbjoO9W1aiuBobLc6l7UAqBtbMM6zlpUdcs49ghSD2BlU9etPCbPVt_90s3YW_S5HGf20c0QP5sAzvyteLczY7gwjdS15qwYPLoyiOHjUgKY2SWL0wQew5KMUE1pQCotC_rwH_Q8LNGXeEZsa1FvuRaqUGKlbAwpRRyuj-HMHDo3a-emdG5-dm4OQw_-jHE98qvkAsgVSEXyI8bfu_9j-wPLqLzr</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yasaka, Koichiro</creator><creator>Kamagata, Koji</creator><creator>Ogawa, Takashi</creator><creator>Hatano, Taku</creator><creator>Takeshige-Amano, Haruka</creator><creator>Ogaki, Kotaro</creator><creator>Andica, Christina</creator><creator>Akai, Hiroyuki</creator><creator>Kunimatsu, Akira</creator><creator>Uchida, Wataru</creator><creator>Hattori, Nobutaka</creator><creator>Aoki, Shigeki</creator><creator>Abe, Osamu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0324-6562</orcidid></search><sort><creationdate>20210901</creationdate><title>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</title><author>Yasaka, Koichiro ; Kamagata, Koji ; Ogawa, Takashi ; Hatano, Taku ; Takeshige-Amano, Haruka ; Ogaki, Kotaro ; Andica, Christina ; Akai, Hiroyuki ; Kunimatsu, Akira ; Uchida, Wataru ; Hattori, Nobutaka ; Aoki, Shigeki ; Abe, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Basal ganglia</topic><topic>Cerebellum</topic><topic>Circuits</topic><topic>Connectome</topic><topic>Deep Learning</topic><topic>Diagnostic Neuroradiology</topic><topic>Diffusion Tensor Imaging</topic><topic>Disorders</topic><topic>G ratio</topic><topic>Ganglia</topic><topic>Humans</topic><topic>Imaging</topic><topic>Kurtosis</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Movement disorders</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Parameters</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson's disease</topic><topic>Prospective Studies</topic><topic>Radiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasaka, Koichiro</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Ogawa, Takashi</creatorcontrib><creatorcontrib>Hatano, Taku</creatorcontrib><creatorcontrib>Takeshige-Amano, Haruka</creatorcontrib><creatorcontrib>Ogaki, Kotaro</creatorcontrib><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Akai, Hiroyuki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Uchida, Wataru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Abe, Osamu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasaka, Koichiro</au><au>Kamagata, Koji</au><au>Ogawa, Takashi</au><au>Hatano, Taku</au><au>Takeshige-Amano, Haruka</au><au>Ogaki, Kotaro</au><au>Andica, Christina</au><au>Akai, Hiroyuki</au><au>Kunimatsu, Akira</au><au>Uchida, Wataru</au><au>Hattori, Nobutaka</au><au>Aoki, Shigeki</au><au>Abe, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>63</volume><issue>9</issue><spage>1451</spage><epage>1462</epage><pages>1451-1462</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><abstract>Purpose To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI. Methods In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models. Results CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and g -ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test, p  &lt; 0.0001). Alterations of neural connections between the basal ganglia and cerebellum were indicated by applying Grad-CAM to the NODDI- and g -ratio-weighted matrices. Conclusion Patients with PD can be differentiated from healthy controls by applying the deep learning technique to the parameter-weighted connectome matrices, and neural circuit disorders including those between the basal ganglia on one side and the cerebellum on the contralateral side were visualized.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33481071</pmid><doi>10.1007/s00234-021-02648-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0324-6562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3940
ispartof Neuroradiology, 2021-09, Vol.63 (9), p.1451-1462
issn 0028-3940
1432-1920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376710
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Artificial intelligence
Artificial neural networks
Basal ganglia
Cerebellum
Circuits
Connectome
Deep Learning
Diagnostic Neuroradiology
Diffusion Tensor Imaging
Disorders
G ratio
Ganglia
Humans
Imaging
Kurtosis
Magnetic resonance imaging
Mathematical models
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Movement disorders
Neural networks
Neurodegenerative diseases
Neuroimaging
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Parameters
Parkinson Disease - diagnostic imaging
Parkinson's disease
Prospective Studies
Radiology
title Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parkinson%E2%80%99s%20disease:%20deep%20learning%20with%20a%20parameter-weighted%20structural%20connectome%20matrix%20for%20diagnosis%20and%20neural%20circuit%20disorder%20investigation&rft.jtitle=Neuroradiology&rft.au=Yasaka,%20Koichiro&rft.date=2021-09-01&rft.volume=63&rft.issue=9&rft.spage=1451&rft.epage=1462&rft.pages=1451-1462&rft.issn=0028-3940&rft.eissn=1432-1920&rft_id=info:doi/10.1007/s00234-021-02648-4&rft_dat=%3Cproquest_pubme%3E2480283473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562651724&rft_id=info:pmid/33481071&rfr_iscdi=true