Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation
Purpose To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusio...
Gespeichert in:
Veröffentlicht in: | Neuroradiology 2021-09, Vol.63 (9), p.1451-1462 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1462 |
---|---|
container_issue | 9 |
container_start_page | 1451 |
container_title | Neuroradiology |
container_volume | 63 |
creator | Yasaka, Koichiro Kamagata, Koji Ogawa, Takashi Hatano, Taku Takeshige-Amano, Haruka Ogaki, Kotaro Andica, Christina Akai, Hiroyuki Kunimatsu, Akira Uchida, Wataru Hattori, Nobutaka Aoki, Shigeki Abe, Osamu |
description | Purpose
To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI.
Methods
In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models.
Results
CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and
g
-ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test,
p
|
doi_str_mv | 10.1007/s00234-021-02648-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480283473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</originalsourceid><addsrcrecordid>eNp9kb2O1TAQhS0EYi8LL0CBLNHQBPx344QCabXiT1oJCqitiTPJ9ZLYF9vZhY53oOL1eBJ8ybL8FBSWi_PNmTk6hNzn7DFnTD9JjAmpKiZ4ebVqKnWDbLiSouKtYDfJpuhNJVvFjsidlM4ZY1JLfZscSakazjTfkK9vIX5wPgX__cu3RHuXEBI-pT3ink4I0Ts_0kuXdxToHiLMmDFWl-jGXcaephwXm5cIE7XBe7Q5zEhnyNF9okOIxRFGH5JLFHxPPa6oi3Zx-bAuxB4jdf4CU3YjZBf8XXJrgCnhvav_mLx_8fzd6avq7M3L16cnZ5VVWuUK5TB0HFmzbbjoO9W1aiuBobLc6l7UAqBtbMM6zlpUdcs49ghSD2BlU9etPCbPVt_90s3YW_S5HGf20c0QP5sAzvyteLczY7gwjdS15qwYPLoyiOHjUgKY2SWL0wQew5KMUE1pQCotC_rwH_Q8LNGXeEZsa1FvuRaqUGKlbAwpRRyuj-HMHDo3a-emdG5-dm4OQw_-jHE98qvkAsgVSEXyI8bfu_9j-wPLqLzr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562651724</pqid></control><display><type>article</type><title>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yasaka, Koichiro ; Kamagata, Koji ; Ogawa, Takashi ; Hatano, Taku ; Takeshige-Amano, Haruka ; Ogaki, Kotaro ; Andica, Christina ; Akai, Hiroyuki ; Kunimatsu, Akira ; Uchida, Wataru ; Hattori, Nobutaka ; Aoki, Shigeki ; Abe, Osamu</creator><creatorcontrib>Yasaka, Koichiro ; Kamagata, Koji ; Ogawa, Takashi ; Hatano, Taku ; Takeshige-Amano, Haruka ; Ogaki, Kotaro ; Andica, Christina ; Akai, Hiroyuki ; Kunimatsu, Akira ; Uchida, Wataru ; Hattori, Nobutaka ; Aoki, Shigeki ; Abe, Osamu</creatorcontrib><description>Purpose
To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI.
Methods
In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models.
Results
CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and
g
-ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test,
p
< 0.0001). Alterations of neural connections between the basal ganglia and cerebellum were indicated by applying Grad-CAM to the NODDI- and
g
-ratio-weighted matrices.
Conclusion
Patients with PD can be differentiated from healthy controls by applying the deep learning technique to the parameter-weighted connectome matrices, and neural circuit disorders including those between the basal ganglia on one side and the cerebellum on the contralateral side were visualized.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-021-02648-4</identifier><identifier>PMID: 33481071</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Artificial neural networks ; Basal ganglia ; Cerebellum ; Circuits ; Connectome ; Deep Learning ; Diagnostic Neuroradiology ; Diffusion Tensor Imaging ; Disorders ; G ratio ; Ganglia ; Humans ; Imaging ; Kurtosis ; Magnetic resonance imaging ; Mathematical models ; Medical diagnosis ; Medical imaging ; Medicine ; Medicine & Public Health ; Movement disorders ; Neural networks ; Neurodegenerative diseases ; Neuroimaging ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; Parameters ; Parkinson Disease - diagnostic imaging ; Parkinson's disease ; Prospective Studies ; Radiology</subject><ispartof>Neuroradiology, 2021-09, Vol.63 (9), p.1451-1462</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</citedby><cites>FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</cites><orcidid>0000-0002-0324-6562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-021-02648-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-021-02648-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33481071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yasaka, Koichiro</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Ogawa, Takashi</creatorcontrib><creatorcontrib>Hatano, Taku</creatorcontrib><creatorcontrib>Takeshige-Amano, Haruka</creatorcontrib><creatorcontrib>Ogaki, Kotaro</creatorcontrib><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Akai, Hiroyuki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Uchida, Wataru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Abe, Osamu</creatorcontrib><title>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Purpose
To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI.
Methods
In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models.
Results
CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and
g
-ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test,
p
< 0.0001). Alterations of neural connections between the basal ganglia and cerebellum were indicated by applying Grad-CAM to the NODDI- and
g
-ratio-weighted matrices.
Conclusion
Patients with PD can be differentiated from healthy controls by applying the deep learning technique to the parameter-weighted connectome matrices, and neural circuit disorders including those between the basal ganglia on one side and the cerebellum on the contralateral side were visualized.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Basal ganglia</subject><subject>Cerebellum</subject><subject>Circuits</subject><subject>Connectome</subject><subject>Deep Learning</subject><subject>Diagnostic Neuroradiology</subject><subject>Diffusion Tensor Imaging</subject><subject>Disorders</subject><subject>G ratio</subject><subject>Ganglia</subject><subject>Humans</subject><subject>Imaging</subject><subject>Kurtosis</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Movement disorders</subject><subject>Neural networks</subject><subject>Neurodegenerative diseases</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Parameters</subject><subject>Parkinson Disease - diagnostic imaging</subject><subject>Parkinson's disease</subject><subject>Prospective Studies</subject><subject>Radiology</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kb2O1TAQhS0EYi8LL0CBLNHQBPx344QCabXiT1oJCqitiTPJ9ZLYF9vZhY53oOL1eBJ8ybL8FBSWi_PNmTk6hNzn7DFnTD9JjAmpKiZ4ebVqKnWDbLiSouKtYDfJpuhNJVvFjsidlM4ZY1JLfZscSakazjTfkK9vIX5wPgX__cu3RHuXEBI-pT3ink4I0Ts_0kuXdxToHiLMmDFWl-jGXcaephwXm5cIE7XBe7Q5zEhnyNF9okOIxRFGH5JLFHxPPa6oi3Zx-bAuxB4jdf4CU3YjZBf8XXJrgCnhvav_mLx_8fzd6avq7M3L16cnZ5VVWuUK5TB0HFmzbbjoO9W1aiuBobLc6l7UAqBtbMM6zlpUdcs49ghSD2BlU9etPCbPVt_90s3YW_S5HGf20c0QP5sAzvyteLczY7gwjdS15qwYPLoyiOHjUgKY2SWL0wQew5KMUE1pQCotC_rwH_Q8LNGXeEZsa1FvuRaqUGKlbAwpRRyuj-HMHDo3a-emdG5-dm4OQw_-jHE98qvkAsgVSEXyI8bfu_9j-wPLqLzr</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yasaka, Koichiro</creator><creator>Kamagata, Koji</creator><creator>Ogawa, Takashi</creator><creator>Hatano, Taku</creator><creator>Takeshige-Amano, Haruka</creator><creator>Ogaki, Kotaro</creator><creator>Andica, Christina</creator><creator>Akai, Hiroyuki</creator><creator>Kunimatsu, Akira</creator><creator>Uchida, Wataru</creator><creator>Hattori, Nobutaka</creator><creator>Aoki, Shigeki</creator><creator>Abe, Osamu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0324-6562</orcidid></search><sort><creationdate>20210901</creationdate><title>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</title><author>Yasaka, Koichiro ; Kamagata, Koji ; Ogawa, Takashi ; Hatano, Taku ; Takeshige-Amano, Haruka ; Ogaki, Kotaro ; Andica, Christina ; Akai, Hiroyuki ; Kunimatsu, Akira ; Uchida, Wataru ; Hattori, Nobutaka ; Aoki, Shigeki ; Abe, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e3ffb1e085812db4b9453a0e4c1c7d262aa98c80b109e46901edea37fac386693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Basal ganglia</topic><topic>Cerebellum</topic><topic>Circuits</topic><topic>Connectome</topic><topic>Deep Learning</topic><topic>Diagnostic Neuroradiology</topic><topic>Diffusion Tensor Imaging</topic><topic>Disorders</topic><topic>G ratio</topic><topic>Ganglia</topic><topic>Humans</topic><topic>Imaging</topic><topic>Kurtosis</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Movement disorders</topic><topic>Neural networks</topic><topic>Neurodegenerative diseases</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Parameters</topic><topic>Parkinson Disease - diagnostic imaging</topic><topic>Parkinson's disease</topic><topic>Prospective Studies</topic><topic>Radiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasaka, Koichiro</creatorcontrib><creatorcontrib>Kamagata, Koji</creatorcontrib><creatorcontrib>Ogawa, Takashi</creatorcontrib><creatorcontrib>Hatano, Taku</creatorcontrib><creatorcontrib>Takeshige-Amano, Haruka</creatorcontrib><creatorcontrib>Ogaki, Kotaro</creatorcontrib><creatorcontrib>Andica, Christina</creatorcontrib><creatorcontrib>Akai, Hiroyuki</creatorcontrib><creatorcontrib>Kunimatsu, Akira</creatorcontrib><creatorcontrib>Uchida, Wataru</creatorcontrib><creatorcontrib>Hattori, Nobutaka</creatorcontrib><creatorcontrib>Aoki, Shigeki</creatorcontrib><creatorcontrib>Abe, Osamu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasaka, Koichiro</au><au>Kamagata, Koji</au><au>Ogawa, Takashi</au><au>Hatano, Taku</au><au>Takeshige-Amano, Haruka</au><au>Ogaki, Kotaro</au><au>Andica, Christina</au><au>Akai, Hiroyuki</au><au>Kunimatsu, Akira</au><au>Uchida, Wataru</au><au>Hattori, Nobutaka</au><au>Aoki, Shigeki</au><au>Abe, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>63</volume><issue>9</issue><spage>1451</spage><epage>1462</epage><pages>1451-1462</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><abstract>Purpose
To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusion-weighted MRI.
Methods
In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic performance of convolutional neural network (CNN) models using those connectome matrices in differentiating patients with PD from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class activation mapping (Grad-CAM) was applied to the trained CNN models.
Results
CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted, neurite orientation dispersion and density imaging (NODDI)–weighted, and
g
-ratio-weighted connectome matrices) showed moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively) in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test,
p
< 0.0001). Alterations of neural connections between the basal ganglia and cerebellum were indicated by applying Grad-CAM to the NODDI- and
g
-ratio-weighted matrices.
Conclusion
Patients with PD can be differentiated from healthy controls by applying the deep learning technique to the parameter-weighted connectome matrices, and neural circuit disorders including those between the basal ganglia on one side and the cerebellum on the contralateral side were visualized.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33481071</pmid><doi>10.1007/s00234-021-02648-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0324-6562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3940 |
ispartof | Neuroradiology, 2021-09, Vol.63 (9), p.1451-1462 |
issn | 0028-3940 1432-1920 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376710 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Artificial intelligence Artificial neural networks Basal ganglia Cerebellum Circuits Connectome Deep Learning Diagnostic Neuroradiology Diffusion Tensor Imaging Disorders G ratio Ganglia Humans Imaging Kurtosis Magnetic resonance imaging Mathematical models Medical diagnosis Medical imaging Medicine Medicine & Public Health Movement disorders Neural networks Neurodegenerative diseases Neuroimaging Neurology Neuroradiology Neurosciences Neurosurgery Parameters Parkinson Disease - diagnostic imaging Parkinson's disease Prospective Studies Radiology |
title | Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parkinson%E2%80%99s%20disease:%20deep%20learning%20with%20a%20parameter-weighted%20structural%20connectome%20matrix%20for%20diagnosis%20and%20neural%20circuit%20disorder%20investigation&rft.jtitle=Neuroradiology&rft.au=Yasaka,%20Koichiro&rft.date=2021-09-01&rft.volume=63&rft.issue=9&rft.spage=1451&rft.epage=1462&rft.pages=1451-1462&rft.issn=0028-3940&rft.eissn=1432-1920&rft_id=info:doi/10.1007/s00234-021-02648-4&rft_dat=%3Cproquest_pubme%3E2480283473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562651724&rft_id=info:pmid/33481071&rfr_iscdi=true |