Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice
Adeno-associated virus (AAV) transduction efficiency and tropism are conventionally determined by high expression of a fluorescent reporter gene. Emerging data has suggested that such conventional methods may underestimate AAV transduction for cells in which reporter expression from AAV vectors is u...
Gespeichert in:
Veröffentlicht in: | Gene therapy 2021-08, Vol.28 (7-8), p.456-468 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 7-8 |
container_start_page | 456 |
container_title | Gene therapy |
container_volume | 28 |
creator | Torregrosa, Tess Lehman, Sydney Hana, Sam Marsh, Galina Xu, Shanqin Koszka, Kathryn Mastrangelo, Nicole McCampbell, Alexander Henderson, Christopher E. Lo, Shih-Ching |
description | Adeno-associated virus (AAV) transduction efficiency and tropism are conventionally determined by high expression of a fluorescent reporter gene. Emerging data has suggested that such conventional methods may underestimate AAV transduction for cells in which reporter expression from AAV vectors is undetectable. To explore an alternative method that captures AAV transduction in cells in which low expression of a cargo is sufficient for the intended activity, we sought after CRISPR/Cas9-mediated gene disruption. In this study, we use AAV to deliver CRISPR/guide RNA designed to abolish the genes NeuN, GFAP, or MOG expressed specifically in neurons, astrocytes, or oligodendrocytes respectively in the central nervous system (CNS) of mice. Abrogated expression of these cell-type-specific genes can be measured biochemically in CNS subregions and provides quantitative assessment of AAV transduction in these CNS cell types. By using this method, we compared CNS transduction of AAV9, AAV-PHP.B, and AAV-PHP.eB delivered via intracerebroventricular injection (ICV) in neonatal mice. We found both AAV-PHP.B and AAV-PHP.eB resulted in marked disruption of the NeuN gene by CRISPR/Cas9, significantly greater than AAV9 in several brain regions and spinal cord. In contrast, only modest disruption of the GFAP gene and the MOG gene was observed by all three AAV variants. Since the procedure of ICV circumvents the blood–brain barrier, our data suggests that, independent of their ability to cross the blood–brain barrier, AAV-PHP.B variants also exhibit remarkably improved neuronal transduction in the CNS. We anticipate this approach will facilitate profiling of AAV cellular tropism in murine CNS. |
doi_str_mv | 10.1038/s41434-021-00223-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672611792</galeid><sourcerecordid>A672611792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-80550bb270131da75e22672a1be25e34231fbc4b8316b444786c3d68343a123f3</originalsourceid><addsrcrecordid>eNp9ksuO0zAYhSMEYsrAC7BAlpAQLDLjW5xkg1RVXCqNALUMW8tJ_rQeuXaxnYo-Bm-MM51bEUJeRI6__8jn-GTZS4LPCGbVeeCEM55jSnKMKWU5e5RNCC9FXnBBH2cTXIs6LwmtTrJnIVxhjHlZ0afZCWMi_aXlJPt9GQC5Hs0W8-W3xflMhTrfQKdVhA51OvhhG7Wz18iXJWrBGBT3W0ArsBBQdGjrXa8NoOiVDd3Q3uLT6Q_U7JEFZ1VUBmmbiBY8NN7tIG10OxjlUQdG78DvE4A2uoXn2ZNemQAvbr6n2eXHD99nn_OLr5_ms-lF3gosYl7hosBNQ0tMGOlUWQCloqSKNEALYJwy0jctbypGRMN5Mi5a1omKcaYIZT07zd4fdLdDkxy345WUkVuvN8rvpVNaHp9YvZYrt5MVK4XgLAm8vRHw7ucAIcqNDmNAKnkegqS8prRimJUJff0XeuUGb5M9SQtBBReixvfUShmQ2vZuTGwUldNkTRBS1jRRZ_-g0uogxecsjK9xPPDuaCAxEX7FlRpCkPPl4ph984BdgzJxHZwZxkcNxyA9gK13IXjo74IjWI7tlId2ytROed1OOSb26mHkdyO3dUwAOwAhHdkV-Puc_iP7B-jS7So</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562646690</pqid></control><display><type>article</type><title>Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Torregrosa, Tess ; Lehman, Sydney ; Hana, Sam ; Marsh, Galina ; Xu, Shanqin ; Koszka, Kathryn ; Mastrangelo, Nicole ; McCampbell, Alexander ; Henderson, Christopher E. ; Lo, Shih-Ching</creator><creatorcontrib>Torregrosa, Tess ; Lehman, Sydney ; Hana, Sam ; Marsh, Galina ; Xu, Shanqin ; Koszka, Kathryn ; Mastrangelo, Nicole ; McCampbell, Alexander ; Henderson, Christopher E. ; Lo, Shih-Ching</creatorcontrib><description>Adeno-associated virus (AAV) transduction efficiency and tropism are conventionally determined by high expression of a fluorescent reporter gene. Emerging data has suggested that such conventional methods may underestimate AAV transduction for cells in which reporter expression from AAV vectors is undetectable. To explore an alternative method that captures AAV transduction in cells in which low expression of a cargo is sufficient for the intended activity, we sought after CRISPR/Cas9-mediated gene disruption. In this study, we use AAV to deliver CRISPR/guide RNA designed to abolish the genes NeuN, GFAP, or MOG expressed specifically in neurons, astrocytes, or oligodendrocytes respectively in the central nervous system (CNS) of mice. Abrogated expression of these cell-type-specific genes can be measured biochemically in CNS subregions and provides quantitative assessment of AAV transduction in these CNS cell types. By using this method, we compared CNS transduction of AAV9, AAV-PHP.B, and AAV-PHP.eB delivered via intracerebroventricular injection (ICV) in neonatal mice. We found both AAV-PHP.B and AAV-PHP.eB resulted in marked disruption of the NeuN gene by CRISPR/Cas9, significantly greater than AAV9 in several brain regions and spinal cord. In contrast, only modest disruption of the GFAP gene and the MOG gene was observed by all three AAV variants. Since the procedure of ICV circumvents the blood–brain barrier, our data suggests that, independent of their ability to cross the blood–brain barrier, AAV-PHP.B variants also exhibit remarkably improved neuronal transduction in the CNS. We anticipate this approach will facilitate profiling of AAV cellular tropism in murine CNS.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-021-00223-3</identifier><identifier>PMID: 33612827</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/32 ; 38/1 ; 38/44 ; 38/71 ; 42/41 ; 631/61/201 ; 631/61/2300/1850 ; Animals ; Astrocytes ; Biomedical and Life Sciences ; Biomedicine ; Blood-brain barrier ; Care and treatment ; Cell Biology ; Cellular signal transduction ; Central Nervous System ; CRISPR ; CRISPR-Cas Systems ; Dependovirus - genetics ; Dependoviruses ; Expression vectors ; Gene disruption ; Gene Expression ; Gene Therapy ; Gene Transfer Techniques ; Genes ; Genetic aspects ; Genetic vectors ; Genetic Vectors - genetics ; Glial fibrillary acidic protein ; Human Genetics ; Infants (Newborn) ; Methods ; Mice ; Nanotechnology ; Neonates ; Neurons ; Oligodendrocyte-myelin glycoprotein ; Oligodendrocytes ; Reporter gene ; Spinal cord ; Transduction ; Transduction, Genetic ; Tropism</subject><ispartof>Gene therapy, 2021-08, Vol.28 (7-8), p.456-468</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-80550bb270131da75e22672a1be25e34231fbc4b8316b444786c3d68343a123f3</citedby><cites>FETCH-LOGICAL-c606t-80550bb270131da75e22672a1be25e34231fbc4b8316b444786c3d68343a123f3</cites><orcidid>0000-0001-9870-0993 ; 0000-0002-5187-0730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41434-021-00223-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41434-021-00223-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33612827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Torregrosa, Tess</creatorcontrib><creatorcontrib>Lehman, Sydney</creatorcontrib><creatorcontrib>Hana, Sam</creatorcontrib><creatorcontrib>Marsh, Galina</creatorcontrib><creatorcontrib>Xu, Shanqin</creatorcontrib><creatorcontrib>Koszka, Kathryn</creatorcontrib><creatorcontrib>Mastrangelo, Nicole</creatorcontrib><creatorcontrib>McCampbell, Alexander</creatorcontrib><creatorcontrib>Henderson, Christopher E.</creatorcontrib><creatorcontrib>Lo, Shih-Ching</creatorcontrib><title>Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Adeno-associated virus (AAV) transduction efficiency and tropism are conventionally determined by high expression of a fluorescent reporter gene. Emerging data has suggested that such conventional methods may underestimate AAV transduction for cells in which reporter expression from AAV vectors is undetectable. To explore an alternative method that captures AAV transduction in cells in which low expression of a cargo is sufficient for the intended activity, we sought after CRISPR/Cas9-mediated gene disruption. In this study, we use AAV to deliver CRISPR/guide RNA designed to abolish the genes NeuN, GFAP, or MOG expressed specifically in neurons, astrocytes, or oligodendrocytes respectively in the central nervous system (CNS) of mice. Abrogated expression of these cell-type-specific genes can be measured biochemically in CNS subregions and provides quantitative assessment of AAV transduction in these CNS cell types. By using this method, we compared CNS transduction of AAV9, AAV-PHP.B, and AAV-PHP.eB delivered via intracerebroventricular injection (ICV) in neonatal mice. We found both AAV-PHP.B and AAV-PHP.eB resulted in marked disruption of the NeuN gene by CRISPR/Cas9, significantly greater than AAV9 in several brain regions and spinal cord. In contrast, only modest disruption of the GFAP gene and the MOG gene was observed by all three AAV variants. Since the procedure of ICV circumvents the blood–brain barrier, our data suggests that, independent of their ability to cross the blood–brain barrier, AAV-PHP.B variants also exhibit remarkably improved neuronal transduction in the CNS. We anticipate this approach will facilitate profiling of AAV cellular tropism in murine CNS.</description><subject>14/32</subject><subject>38/1</subject><subject>38/44</subject><subject>38/71</subject><subject>42/41</subject><subject>631/61/201</subject><subject>631/61/2300/1850</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Blood-brain barrier</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cellular signal transduction</subject><subject>Central Nervous System</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Dependovirus - genetics</subject><subject>Dependoviruses</subject><subject>Expression vectors</subject><subject>Gene disruption</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic vectors</subject><subject>Genetic Vectors - genetics</subject><subject>Glial fibrillary acidic protein</subject><subject>Human Genetics</subject><subject>Infants (Newborn)</subject><subject>Methods</subject><subject>Mice</subject><subject>Nanotechnology</subject><subject>Neonates</subject><subject>Neurons</subject><subject>Oligodendrocyte-myelin glycoprotein</subject><subject>Oligodendrocytes</subject><subject>Reporter gene</subject><subject>Spinal cord</subject><subject>Transduction</subject><subject>Transduction, Genetic</subject><subject>Tropism</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9ksuO0zAYhSMEYsrAC7BAlpAQLDLjW5xkg1RVXCqNALUMW8tJ_rQeuXaxnYo-Bm-MM51bEUJeRI6__8jn-GTZS4LPCGbVeeCEM55jSnKMKWU5e5RNCC9FXnBBH2cTXIs6LwmtTrJnIVxhjHlZ0afZCWMi_aXlJPt9GQC5Hs0W8-W3xflMhTrfQKdVhA51OvhhG7Wz18iXJWrBGBT3W0ArsBBQdGjrXa8NoOiVDd3Q3uLT6Q_U7JEFZ1VUBmmbiBY8NN7tIG10OxjlUQdG78DvE4A2uoXn2ZNemQAvbr6n2eXHD99nn_OLr5_ms-lF3gosYl7hosBNQ0tMGOlUWQCloqSKNEALYJwy0jctbypGRMN5Mi5a1omKcaYIZT07zd4fdLdDkxy345WUkVuvN8rvpVNaHp9YvZYrt5MVK4XgLAm8vRHw7ucAIcqNDmNAKnkegqS8prRimJUJff0XeuUGb5M9SQtBBReixvfUShmQ2vZuTGwUldNkTRBS1jRRZ_-g0uogxecsjK9xPPDuaCAxEX7FlRpCkPPl4ph984BdgzJxHZwZxkcNxyA9gK13IXjo74IjWI7tlId2ytROed1OOSb26mHkdyO3dUwAOwAhHdkV-Puc_iP7B-jS7So</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Torregrosa, Tess</creator><creator>Lehman, Sydney</creator><creator>Hana, Sam</creator><creator>Marsh, Galina</creator><creator>Xu, Shanqin</creator><creator>Koszka, Kathryn</creator><creator>Mastrangelo, Nicole</creator><creator>McCampbell, Alexander</creator><creator>Henderson, Christopher E.</creator><creator>Lo, Shih-Ching</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9870-0993</orcidid><orcidid>https://orcid.org/0000-0002-5187-0730</orcidid></search><sort><creationdate>20210801</creationdate><title>Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice</title><author>Torregrosa, Tess ; Lehman, Sydney ; Hana, Sam ; Marsh, Galina ; Xu, Shanqin ; Koszka, Kathryn ; Mastrangelo, Nicole ; McCampbell, Alexander ; Henderson, Christopher E. ; Lo, Shih-Ching</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-80550bb270131da75e22672a1be25e34231fbc4b8316b444786c3d68343a123f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/32</topic><topic>38/1</topic><topic>38/44</topic><topic>38/71</topic><topic>42/41</topic><topic>631/61/201</topic><topic>631/61/2300/1850</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Blood-brain barrier</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cellular signal transduction</topic><topic>Central Nervous System</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Dependovirus - genetics</topic><topic>Dependoviruses</topic><topic>Expression vectors</topic><topic>Gene disruption</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic vectors</topic><topic>Genetic Vectors - genetics</topic><topic>Glial fibrillary acidic protein</topic><topic>Human Genetics</topic><topic>Infants (Newborn)</topic><topic>Methods</topic><topic>Mice</topic><topic>Nanotechnology</topic><topic>Neonates</topic><topic>Neurons</topic><topic>Oligodendrocyte-myelin glycoprotein</topic><topic>Oligodendrocytes</topic><topic>Reporter gene</topic><topic>Spinal cord</topic><topic>Transduction</topic><topic>Transduction, Genetic</topic><topic>Tropism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Torregrosa, Tess</creatorcontrib><creatorcontrib>Lehman, Sydney</creatorcontrib><creatorcontrib>Hana, Sam</creatorcontrib><creatorcontrib>Marsh, Galina</creatorcontrib><creatorcontrib>Xu, Shanqin</creatorcontrib><creatorcontrib>Koszka, Kathryn</creatorcontrib><creatorcontrib>Mastrangelo, Nicole</creatorcontrib><creatorcontrib>McCampbell, Alexander</creatorcontrib><creatorcontrib>Henderson, Christopher E.</creatorcontrib><creatorcontrib>Lo, Shih-Ching</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Torregrosa, Tess</au><au>Lehman, Sydney</au><au>Hana, Sam</au><au>Marsh, Galina</au><au>Xu, Shanqin</au><au>Koszka, Kathryn</au><au>Mastrangelo, Nicole</au><au>McCampbell, Alexander</au><au>Henderson, Christopher E.</au><au>Lo, Shih-Ching</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>28</volume><issue>7-8</issue><spage>456</spage><epage>468</epage><pages>456-468</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Adeno-associated virus (AAV) transduction efficiency and tropism are conventionally determined by high expression of a fluorescent reporter gene. Emerging data has suggested that such conventional methods may underestimate AAV transduction for cells in which reporter expression from AAV vectors is undetectable. To explore an alternative method that captures AAV transduction in cells in which low expression of a cargo is sufficient for the intended activity, we sought after CRISPR/Cas9-mediated gene disruption. In this study, we use AAV to deliver CRISPR/guide RNA designed to abolish the genes NeuN, GFAP, or MOG expressed specifically in neurons, astrocytes, or oligodendrocytes respectively in the central nervous system (CNS) of mice. Abrogated expression of these cell-type-specific genes can be measured biochemically in CNS subregions and provides quantitative assessment of AAV transduction in these CNS cell types. By using this method, we compared CNS transduction of AAV9, AAV-PHP.B, and AAV-PHP.eB delivered via intracerebroventricular injection (ICV) in neonatal mice. We found both AAV-PHP.B and AAV-PHP.eB resulted in marked disruption of the NeuN gene by CRISPR/Cas9, significantly greater than AAV9 in several brain regions and spinal cord. In contrast, only modest disruption of the GFAP gene and the MOG gene was observed by all three AAV variants. Since the procedure of ICV circumvents the blood–brain barrier, our data suggests that, independent of their ability to cross the blood–brain barrier, AAV-PHP.B variants also exhibit remarkably improved neuronal transduction in the CNS. We anticipate this approach will facilitate profiling of AAV cellular tropism in murine CNS.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33612827</pmid><doi>10.1038/s41434-021-00223-3</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9870-0993</orcidid><orcidid>https://orcid.org/0000-0002-5187-0730</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2021-08, Vol.28 (7-8), p.456-468 |
issn | 0969-7128 1476-5462 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376643 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 14/32 38/1 38/44 38/71 42/41 631/61/201 631/61/2300/1850 Animals Astrocytes Biomedical and Life Sciences Biomedicine Blood-brain barrier Care and treatment Cell Biology Cellular signal transduction Central Nervous System CRISPR CRISPR-Cas Systems Dependovirus - genetics Dependoviruses Expression vectors Gene disruption Gene Expression Gene Therapy Gene Transfer Techniques Genes Genetic aspects Genetic vectors Genetic Vectors - genetics Glial fibrillary acidic protein Human Genetics Infants (Newborn) Methods Mice Nanotechnology Neonates Neurons Oligodendrocyte-myelin glycoprotein Oligodendrocytes Reporter gene Spinal cord Transduction Transduction, Genetic Tropism |
title | Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20CRISPR/Cas9-mediated%20disruption%20of%20CNS%20cell%20type%20genes%20to%20profile%20transduction%20of%20AAV%20by%20neonatal%20intracerebroventricular%20delivery%20in%20mice&rft.jtitle=Gene%20therapy&rft.au=Torregrosa,%20Tess&rft.date=2021-08-01&rft.volume=28&rft.issue=7-8&rft.spage=456&rft.epage=468&rft.pages=456-468&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-021-00223-3&rft_dat=%3Cgale_pubme%3EA672611792%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562646690&rft_id=info:pmid/33612827&rft_galeid=A672611792&rfr_iscdi=true |