Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation
When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilita...
Gespeichert in:
Veröffentlicht in: | Protein science 2021-09, Vol.30 (9), p.1833-1853 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1853 |
---|---|
container_issue | 9 |
container_start_page | 1833 |
container_title | Protein science |
container_volume | 30 |
creator | Swint‐Kruse, Liskin Martin, Tyler A. Page, Braelyn M. Wu, Tiffany Gerhart, Paige M. Dougherty, Larissa L. Tang, Qingling Parente, Daniel J. Mosier, Brian R. Bantis, Leonidas E. Fenton, Aron W. |
description | When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change. |
doi_str_mv | 10.1002/pro.4136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536479290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModlsFf4EEvPFmar4mk9wIUmoVCpWi4F3IZs50UmYnaz52Kf55M26tH-BVOLxPHg7nRegFJaeUEPZmG8OpoFw-QisqpG6Ull8foxXRkjaKS3WEjlO6JYQIyvhTdMQF6SSnfIW-X48QUrYZD2V22YfZTjiU7MIGEg7OlYj3I8w4lXXKPpcFSdhGwH7OMfTFQY_r9znMriYQd3XehuQPYB5r1vsdxBvAe59HnLbgvF3SZ-jJYKcEz-_fE_Tl_fnnsw_N5dXFx7N3l40TXMmGdYRwwoizupXaStI6RrpWD5qRnvSUDn3b27USkikphOVrx5VyvONKw8CAn6C3B--2rDfQO6iL28lso9_YeGeC9ebvZPajuQk7o3gnBdVV8PpeEMO3AimbjU8OpsnOEEoyrOVSdJppUtFX_6C3ocR61IWSTNJOteS30MWQUoThYRlKzNJonYNZGq3oyz-XfwB_VViB5gDs_QR3_xWZT9dXP4U_AMl8raQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562617850</pqid></control><display><type>article</type><title>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Swint‐Kruse, Liskin ; Martin, Tyler A. ; Page, Braelyn M. ; Wu, Tiffany ; Gerhart, Paige M. ; Dougherty, Larissa L. ; Tang, Qingling ; Parente, Daniel J. ; Mosier, Brian R. ; Bantis, Leonidas E. ; Fenton, Aron W.</creator><creatorcontrib>Swint‐Kruse, Liskin ; Martin, Tyler A. ; Page, Braelyn M. ; Wu, Tiffany ; Gerhart, Paige M. ; Dougherty, Larissa L. ; Tang, Qingling ; Parente, Daniel J. ; Mosier, Brian R. ; Bantis, Leonidas E. ; Fenton, Aron W.</creatorcontrib><description>When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4136</identifier><identifier>PMID: 34076313</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Amino Acid Substitution ; Amino acids ; Binding Sites ; Cloning, Molecular ; Computational Biology - methods ; Conserved sequence ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; E coli ; Eigenvectors ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Evolution ; Evolution, Molecular ; Full‐Length Paper ; Full‐Length Papers ; Gene Expression ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Humans ; In vivo methods and tests ; Kinases ; Kinetics ; Lac Repressors - chemistry ; Lac Repressors - genetics ; Lac Repressors - metabolism ; Lactose ; Lactose repressor ; lactose repressor protein ; Models, Molecular ; Mutation ; Phosphoenolpyruvate - chemistry ; Phosphoenolpyruvate - metabolism ; Phylogenetics ; Phylogeny ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Proteins ; Pyruvate kinase ; Pyruvate Kinase - chemistry ; Pyruvate Kinase - genetics ; Pyruvate Kinase - metabolism ; Pyruvic acid ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; rheostat positions ; Speciation ; Structure-Activity Relationship ; Substitutes ; Thermodynamics</subject><ispartof>Protein science, 2021-09, Vol.30 (9), p.1833-1853</ispartof><rights>2021 The Protein Society.</rights><rights>2021 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</citedby><cites>FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</cites><orcidid>0000-0002-5925-9741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376419/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376419/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34076313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swint‐Kruse, Liskin</creatorcontrib><creatorcontrib>Martin, Tyler A.</creatorcontrib><creatorcontrib>Page, Braelyn M.</creatorcontrib><creatorcontrib>Wu, Tiffany</creatorcontrib><creatorcontrib>Gerhart, Paige M.</creatorcontrib><creatorcontrib>Dougherty, Larissa L.</creatorcontrib><creatorcontrib>Tang, Qingling</creatorcontrib><creatorcontrib>Parente, Daniel J.</creatorcontrib><creatorcontrib>Mosier, Brian R.</creatorcontrib><creatorcontrib>Bantis, Leonidas E.</creatorcontrib><creatorcontrib>Fenton, Aron W.</creatorcontrib><title>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.</description><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Computational Biology - methods</subject><subject>Conserved sequence</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>E coli</subject><subject>Eigenvectors</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Full‐Length Paper</subject><subject>Full‐Length Papers</subject><subject>Gene Expression</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Lac Repressors - chemistry</subject><subject>Lac Repressors - genetics</subject><subject>Lac Repressors - metabolism</subject><subject>Lactose</subject><subject>Lactose repressor</subject><subject>lactose repressor protein</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Phosphoenolpyruvate - chemistry</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Pyruvate kinase</subject><subject>Pyruvate Kinase - chemistry</subject><subject>Pyruvate Kinase - genetics</subject><subject>Pyruvate Kinase - metabolism</subject><subject>Pyruvic acid</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>rheostat positions</subject><subject>Speciation</subject><subject>Structure-Activity Relationship</subject><subject>Substitutes</subject><subject>Thermodynamics</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoModlsFf4EEvPFmar4mk9wIUmoVCpWi4F3IZs50UmYnaz52Kf55M26tH-BVOLxPHg7nRegFJaeUEPZmG8OpoFw-QisqpG6Ull8foxXRkjaKS3WEjlO6JYQIyvhTdMQF6SSnfIW-X48QUrYZD2V22YfZTjiU7MIGEg7OlYj3I8w4lXXKPpcFSdhGwH7OMfTFQY_r9znMriYQd3XehuQPYB5r1vsdxBvAe59HnLbgvF3SZ-jJYKcEz-_fE_Tl_fnnsw_N5dXFx7N3l40TXMmGdYRwwoizupXaStI6RrpWD5qRnvSUDn3b27USkikphOVrx5VyvONKw8CAn6C3B--2rDfQO6iL28lso9_YeGeC9ebvZPajuQk7o3gnBdVV8PpeEMO3AimbjU8OpsnOEEoyrOVSdJppUtFX_6C3ocR61IWSTNJOteS30MWQUoThYRlKzNJonYNZGq3oyz-XfwB_VViB5gDs_QR3_xWZT9dXP4U_AMl8raQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Swint‐Kruse, Liskin</creator><creator>Martin, Tyler A.</creator><creator>Page, Braelyn M.</creator><creator>Wu, Tiffany</creator><creator>Gerhart, Paige M.</creator><creator>Dougherty, Larissa L.</creator><creator>Tang, Qingling</creator><creator>Parente, Daniel J.</creator><creator>Mosier, Brian R.</creator><creator>Bantis, Leonidas E.</creator><creator>Fenton, Aron W.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5925-9741</orcidid></search><sort><creationdate>202109</creationdate><title>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</title><author>Swint‐Kruse, Liskin ; Martin, Tyler A. ; Page, Braelyn M. ; Wu, Tiffany ; Gerhart, Paige M. ; Dougherty, Larissa L. ; Tang, Qingling ; Parente, Daniel J. ; Mosier, Brian R. ; Bantis, Leonidas E. ; Fenton, Aron W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Computational Biology - methods</topic><topic>Conserved sequence</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>E coli</topic><topic>Eigenvectors</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Full‐Length Paper</topic><topic>Full‐Length Papers</topic><topic>Gene Expression</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Lac Repressors - chemistry</topic><topic>Lac Repressors - genetics</topic><topic>Lac Repressors - metabolism</topic><topic>Lactose</topic><topic>Lactose repressor</topic><topic>lactose repressor protein</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Phosphoenolpyruvate - chemistry</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Pyruvate kinase</topic><topic>Pyruvate Kinase - chemistry</topic><topic>Pyruvate Kinase - genetics</topic><topic>Pyruvate Kinase - metabolism</topic><topic>Pyruvic acid</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>rheostat positions</topic><topic>Speciation</topic><topic>Structure-Activity Relationship</topic><topic>Substitutes</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swint‐Kruse, Liskin</creatorcontrib><creatorcontrib>Martin, Tyler A.</creatorcontrib><creatorcontrib>Page, Braelyn M.</creatorcontrib><creatorcontrib>Wu, Tiffany</creatorcontrib><creatorcontrib>Gerhart, Paige M.</creatorcontrib><creatorcontrib>Dougherty, Larissa L.</creatorcontrib><creatorcontrib>Tang, Qingling</creatorcontrib><creatorcontrib>Parente, Daniel J.</creatorcontrib><creatorcontrib>Mosier, Brian R.</creatorcontrib><creatorcontrib>Bantis, Leonidas E.</creatorcontrib><creatorcontrib>Fenton, Aron W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swint‐Kruse, Liskin</au><au>Martin, Tyler A.</au><au>Page, Braelyn M.</au><au>Wu, Tiffany</au><au>Gerhart, Paige M.</au><au>Dougherty, Larissa L.</au><au>Tang, Qingling</au><au>Parente, Daniel J.</au><au>Mosier, Brian R.</au><au>Bantis, Leonidas E.</au><au>Fenton, Aron W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2021-09</date><risdate>2021</risdate><volume>30</volume><issue>9</issue><spage>1833</spage><epage>1853</epage><pages>1833-1853</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34076313</pmid><doi>10.1002/pro.4136</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5925-9741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2021-09, Vol.30 (9), p.1833-1853 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376419 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Diphosphate - chemistry Adenosine Diphosphate - metabolism Amino Acid Substitution Amino acids Binding Sites Cloning, Molecular Computational Biology - methods Conserved sequence DNA - chemistry DNA - genetics DNA - metabolism E coli Eigenvectors Escherichia coli - classification Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Evolution Evolution, Molecular Full‐Length Paper Full‐Length Papers Gene Expression Genetic Vectors - chemistry Genetic Vectors - metabolism Humans In vivo methods and tests Kinases Kinetics Lac Repressors - chemistry Lac Repressors - genetics Lac Repressors - metabolism Lactose Lactose repressor lactose repressor protein Models, Molecular Mutation Phosphoenolpyruvate - chemistry Phosphoenolpyruvate - metabolism Phylogenetics Phylogeny Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Proteins Pyruvate kinase Pyruvate Kinase - chemistry Pyruvate Kinase - genetics Pyruvate Kinase - metabolism Pyruvic acid Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism rheostat positions Speciation Structure-Activity Relationship Substitutes Thermodynamics |
title | Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheostat%20functional%20outcomes%20occur%20when%20substitutions%20are%20introduced%20at%20nonconserved%20positions%20that%20diverge%20with%20speciation&rft.jtitle=Protein%20science&rft.au=Swint%E2%80%90Kruse,%20Liskin&rft.date=2021-09&rft.volume=30&rft.issue=9&rft.spage=1833&rft.epage=1853&rft.pages=1833-1853&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4136&rft_dat=%3Cproquest_pubme%3E2536479290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562617850&rft_id=info:pmid/34076313&rfr_iscdi=true |