Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation

When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2021-09, Vol.30 (9), p.1833-1853
Hauptverfasser: Swint‐Kruse, Liskin, Martin, Tyler A., Page, Braelyn M., Wu, Tiffany, Gerhart, Paige M., Dougherty, Larissa L., Tang, Qingling, Parente, Daniel J., Mosier, Brian R., Bantis, Leonidas E., Fenton, Aron W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1853
container_issue 9
container_start_page 1833
container_title Protein science
container_volume 30
creator Swint‐Kruse, Liskin
Martin, Tyler A.
Page, Braelyn M.
Wu, Tiffany
Gerhart, Paige M.
Dougherty, Larissa L.
Tang, Qingling
Parente, Daniel J.
Mosier, Brian R.
Bantis, Leonidas E.
Fenton, Aron W.
description When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.
doi_str_mv 10.1002/pro.4136
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536479290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoModlsFf4EEvPFmar4mk9wIUmoVCpWi4F3IZs50UmYnaz52Kf55M26tH-BVOLxPHg7nRegFJaeUEPZmG8OpoFw-QisqpG6Ull8foxXRkjaKS3WEjlO6JYQIyvhTdMQF6SSnfIW-X48QUrYZD2V22YfZTjiU7MIGEg7OlYj3I8w4lXXKPpcFSdhGwH7OMfTFQY_r9znMriYQd3XehuQPYB5r1vsdxBvAe59HnLbgvF3SZ-jJYKcEz-_fE_Tl_fnnsw_N5dXFx7N3l40TXMmGdYRwwoizupXaStI6RrpWD5qRnvSUDn3b27USkikphOVrx5VyvONKw8CAn6C3B--2rDfQO6iL28lso9_YeGeC9ebvZPajuQk7o3gnBdVV8PpeEMO3AimbjU8OpsnOEEoyrOVSdJppUtFX_6C3ocR61IWSTNJOteS30MWQUoThYRlKzNJonYNZGq3oyz-XfwB_VViB5gDs_QR3_xWZT9dXP4U_AMl8raQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562617850</pqid></control><display><type>article</type><title>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Swint‐Kruse, Liskin ; Martin, Tyler A. ; Page, Braelyn M. ; Wu, Tiffany ; Gerhart, Paige M. ; Dougherty, Larissa L. ; Tang, Qingling ; Parente, Daniel J. ; Mosier, Brian R. ; Bantis, Leonidas E. ; Fenton, Aron W.</creator><creatorcontrib>Swint‐Kruse, Liskin ; Martin, Tyler A. ; Page, Braelyn M. ; Wu, Tiffany ; Gerhart, Paige M. ; Dougherty, Larissa L. ; Tang, Qingling ; Parente, Daniel J. ; Mosier, Brian R. ; Bantis, Leonidas E. ; Fenton, Aron W.</creatorcontrib><description>When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.4136</identifier><identifier>PMID: 34076313</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adenosine Diphosphate - chemistry ; Adenosine Diphosphate - metabolism ; Amino Acid Substitution ; Amino acids ; Binding Sites ; Cloning, Molecular ; Computational Biology - methods ; Conserved sequence ; DNA - chemistry ; DNA - genetics ; DNA - metabolism ; E coli ; Eigenvectors ; Escherichia coli - classification ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Evolution ; Evolution, Molecular ; Full‐Length Paper ; Full‐Length Papers ; Gene Expression ; Genetic Vectors - chemistry ; Genetic Vectors - metabolism ; Humans ; In vivo methods and tests ; Kinases ; Kinetics ; Lac Repressors - chemistry ; Lac Repressors - genetics ; Lac Repressors - metabolism ; Lactose ; Lactose repressor ; lactose repressor protein ; Models, Molecular ; Mutation ; Phosphoenolpyruvate - chemistry ; Phosphoenolpyruvate - metabolism ; Phylogenetics ; Phylogeny ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Proteins ; Pyruvate kinase ; Pyruvate Kinase - chemistry ; Pyruvate Kinase - genetics ; Pyruvate Kinase - metabolism ; Pyruvic acid ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; rheostat positions ; Speciation ; Structure-Activity Relationship ; Substitutes ; Thermodynamics</subject><ispartof>Protein science, 2021-09, Vol.30 (9), p.1833-1853</ispartof><rights>2021 The Protein Society.</rights><rights>2021 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</citedby><cites>FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</cites><orcidid>0000-0002-5925-9741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376419/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376419/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34076313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Swint‐Kruse, Liskin</creatorcontrib><creatorcontrib>Martin, Tyler A.</creatorcontrib><creatorcontrib>Page, Braelyn M.</creatorcontrib><creatorcontrib>Wu, Tiffany</creatorcontrib><creatorcontrib>Gerhart, Paige M.</creatorcontrib><creatorcontrib>Dougherty, Larissa L.</creatorcontrib><creatorcontrib>Tang, Qingling</creatorcontrib><creatorcontrib>Parente, Daniel J.</creatorcontrib><creatorcontrib>Mosier, Brian R.</creatorcontrib><creatorcontrib>Bantis, Leonidas E.</creatorcontrib><creatorcontrib>Fenton, Aron W.</creatorcontrib><title>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.</description><subject>Adenosine Diphosphate - chemistry</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Computational Biology - methods</subject><subject>Conserved sequence</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>E coli</subject><subject>Eigenvectors</subject><subject>Escherichia coli - classification</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Full‐Length Paper</subject><subject>Full‐Length Papers</subject><subject>Gene Expression</subject><subject>Genetic Vectors - chemistry</subject><subject>Genetic Vectors - metabolism</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>Lac Repressors - chemistry</subject><subject>Lac Repressors - genetics</subject><subject>Lac Repressors - metabolism</subject><subject>Lactose</subject><subject>Lactose repressor</subject><subject>lactose repressor protein</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Phosphoenolpyruvate - chemistry</subject><subject>Phosphoenolpyruvate - metabolism</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Pyruvate kinase</subject><subject>Pyruvate Kinase - chemistry</subject><subject>Pyruvate Kinase - genetics</subject><subject>Pyruvate Kinase - metabolism</subject><subject>Pyruvic acid</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>rheostat positions</subject><subject>Speciation</subject><subject>Structure-Activity Relationship</subject><subject>Substitutes</subject><subject>Thermodynamics</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kV1rFDEUhoModlsFf4EEvPFmar4mk9wIUmoVCpWi4F3IZs50UmYnaz52Kf55M26tH-BVOLxPHg7nRegFJaeUEPZmG8OpoFw-QisqpG6Ull8foxXRkjaKS3WEjlO6JYQIyvhTdMQF6SSnfIW-X48QUrYZD2V22YfZTjiU7MIGEg7OlYj3I8w4lXXKPpcFSdhGwH7OMfTFQY_r9znMriYQd3XehuQPYB5r1vsdxBvAe59HnLbgvF3SZ-jJYKcEz-_fE_Tl_fnnsw_N5dXFx7N3l40TXMmGdYRwwoizupXaStI6RrpWD5qRnvSUDn3b27USkikphOVrx5VyvONKw8CAn6C3B--2rDfQO6iL28lso9_YeGeC9ebvZPajuQk7o3gnBdVV8PpeEMO3AimbjU8OpsnOEEoyrOVSdJppUtFX_6C3ocR61IWSTNJOteS30MWQUoThYRlKzNJonYNZGq3oyz-XfwB_VViB5gDs_QR3_xWZT9dXP4U_AMl8raQ</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Swint‐Kruse, Liskin</creator><creator>Martin, Tyler A.</creator><creator>Page, Braelyn M.</creator><creator>Wu, Tiffany</creator><creator>Gerhart, Paige M.</creator><creator>Dougherty, Larissa L.</creator><creator>Tang, Qingling</creator><creator>Parente, Daniel J.</creator><creator>Mosier, Brian R.</creator><creator>Bantis, Leonidas E.</creator><creator>Fenton, Aron W.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5925-9741</orcidid></search><sort><creationdate>202109</creationdate><title>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</title><author>Swint‐Kruse, Liskin ; Martin, Tyler A. ; Page, Braelyn M. ; Wu, Tiffany ; Gerhart, Paige M. ; Dougherty, Larissa L. ; Tang, Qingling ; Parente, Daniel J. ; Mosier, Brian R. ; Bantis, Leonidas E. ; Fenton, Aron W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4386-27003020ca9569a605c20759f920d0d11fd5dab84628644a3bc388c37389ef2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine Diphosphate - chemistry</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Computational Biology - methods</topic><topic>Conserved sequence</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>E coli</topic><topic>Eigenvectors</topic><topic>Escherichia coli - classification</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Full‐Length Paper</topic><topic>Full‐Length Papers</topic><topic>Gene Expression</topic><topic>Genetic Vectors - chemistry</topic><topic>Genetic Vectors - metabolism</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>Lac Repressors - chemistry</topic><topic>Lac Repressors - genetics</topic><topic>Lac Repressors - metabolism</topic><topic>Lactose</topic><topic>Lactose repressor</topic><topic>lactose repressor protein</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Phosphoenolpyruvate - chemistry</topic><topic>Phosphoenolpyruvate - metabolism</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Pyruvate kinase</topic><topic>Pyruvate Kinase - chemistry</topic><topic>Pyruvate Kinase - genetics</topic><topic>Pyruvate Kinase - metabolism</topic><topic>Pyruvic acid</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>rheostat positions</topic><topic>Speciation</topic><topic>Structure-Activity Relationship</topic><topic>Substitutes</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swint‐Kruse, Liskin</creatorcontrib><creatorcontrib>Martin, Tyler A.</creatorcontrib><creatorcontrib>Page, Braelyn M.</creatorcontrib><creatorcontrib>Wu, Tiffany</creatorcontrib><creatorcontrib>Gerhart, Paige M.</creatorcontrib><creatorcontrib>Dougherty, Larissa L.</creatorcontrib><creatorcontrib>Tang, Qingling</creatorcontrib><creatorcontrib>Parente, Daniel J.</creatorcontrib><creatorcontrib>Mosier, Brian R.</creatorcontrib><creatorcontrib>Bantis, Leonidas E.</creatorcontrib><creatorcontrib>Fenton, Aron W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swint‐Kruse, Liskin</au><au>Martin, Tyler A.</au><au>Page, Braelyn M.</au><au>Wu, Tiffany</au><au>Gerhart, Paige M.</au><au>Dougherty, Larissa L.</au><au>Tang, Qingling</au><au>Parente, Daniel J.</au><au>Mosier, Brian R.</au><au>Bantis, Leonidas E.</au><au>Fenton, Aron W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2021-09</date><risdate>2021</risdate><volume>30</volume><issue>9</issue><spage>1833</spage><epage>1853</epage><pages>1833-1853</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>When amino acids vary during evolution, the outcome can be functionally neutral or biologically‐important. We previously found that substituting a subset of nonconserved positions, “rheostat” positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether “phylogenetic” patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10–15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non‐neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously‐identified hLPYK rheostat, “toggle” (most substitution abolished function), and “neutral” (all substitutions were like wild‐type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12–13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co‐evolutionary or eigenvector centrality measures of evolutionary change.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34076313</pmid><doi>10.1002/pro.4136</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5925-9741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2021-09, Vol.30 (9), p.1833-1853
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376419
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Diphosphate - chemistry
Adenosine Diphosphate - metabolism
Amino Acid Substitution
Amino acids
Binding Sites
Cloning, Molecular
Computational Biology - methods
Conserved sequence
DNA - chemistry
DNA - genetics
DNA - metabolism
E coli
Eigenvectors
Escherichia coli - classification
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Evolution
Evolution, Molecular
Full‐Length Paper
Full‐Length Papers
Gene Expression
Genetic Vectors - chemistry
Genetic Vectors - metabolism
Humans
In vivo methods and tests
Kinases
Kinetics
Lac Repressors - chemistry
Lac Repressors - genetics
Lac Repressors - metabolism
Lactose
Lactose repressor
lactose repressor protein
Models, Molecular
Mutation
Phosphoenolpyruvate - chemistry
Phosphoenolpyruvate - metabolism
Phylogenetics
Phylogeny
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Proteins
Pyruvate kinase
Pyruvate Kinase - chemistry
Pyruvate Kinase - genetics
Pyruvate Kinase - metabolism
Pyruvic acid
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
rheostat positions
Speciation
Structure-Activity Relationship
Substitutes
Thermodynamics
title Rheostat functional outcomes occur when substitutions are introduced at nonconserved positions that diverge with speciation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheostat%20functional%20outcomes%20occur%20when%20substitutions%20are%20introduced%20at%20nonconserved%20positions%20that%20diverge%20with%20speciation&rft.jtitle=Protein%20science&rft.au=Swint%E2%80%90Kruse,%20Liskin&rft.date=2021-09&rft.volume=30&rft.issue=9&rft.spage=1833&rft.epage=1853&rft.pages=1833-1853&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.4136&rft_dat=%3Cproquest_pubme%3E2536479290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562617850&rft_id=info:pmid/34076313&rfr_iscdi=true