Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise

Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2020-06, Vol.53 (2), p.1-35, Article 28
Hauptverfasser: Wu, Jian, Sheng, Victor S., Zhang, Jing, Li, Hua, Dadakova, Tetiana, Swisher, Christine Leon, Cui, Zhiming, Zhao, Pengpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 2
container_start_page 1
container_title ACM computing surveys
container_volume 53
creator Wu, Jian
Sheng, Victor S.
Zhang, Jing
Li, Hua
Dadakova, Tetiana
Swisher, Christine Leon
Cui, Zhiming
Zhao, Pengpeng
description Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.
doi_str_mv 10.1145/3379504
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576367440</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-8abbd4f9aa7d2ace73bdfe0746a32b9ea46a72590babd65d225f37cc17b8eba13</originalsourceid><addsrcrecordid>eNpd0UtLxDAUBeAgio4P3LuQggvdVPNOZ6MMg4-BETe6DjdpOkbaRpNW8N9bmXF8rBK4Xw43HIQOCT4nhIsLxtRYYL6BRkQIlSvGySYaYSZxjhnGO2g3pReMMeVEbqMdxjklpBAjdHXf153P52BcnU1s599dNncQW98uskm9CNF3z03KqhCzWQMLl01rSMlX3kLnQ7uPtiqokztYnXvo6eb6cXqXzx9uZ9PJPAfGRZcXYEzJqzGAKilYp5gpK4cVl8CoGTsYLoqKMTZgSilKSkXFlLVEmcIZIGwPXS5zX3vTuNK6totQ69foG4gfOoDXfyetf9aL8K4LpiQpvgLOVgExvPUudbrxybq6htaFPmkqJFNYEioGevKPvoQ-tsP3BqUkk4pzPKjTpbIxpBRdtV6GYP1Vil6VMsjj37uv3XcLAzhaArDNz3T1-hMFUI8j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576367440</pqid></control><display><type>article</type><title>Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise</title><source>ACM Digital Library Complete</source><creator>Wu, Jian ; Sheng, Victor S. ; Zhang, Jing ; Li, Hua ; Dadakova, Tetiana ; Swisher, Christine Leon ; Cui, Zhiming ; Zhao, Pengpeng</creator><creatorcontrib>Wu, Jian ; Sheng, Victor S. ; Zhang, Jing ; Li, Hua ; Dadakova, Tetiana ; Swisher, Christine Leon ; Cui, Zhiming ; Zhao, Pengpeng</creatorcontrib><description>Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3379504</identifier><identifier>PMID: 34421185</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Active learning ; Algorithms ; Annotations ; Classification ; Computer science ; Image classification ; Machine learning ; Machine learning theory ; Sampling ; Theory and algorithms for application domains ; Theory of computation ; Training</subject><ispartof>ACM computing surveys, 2020-06, Vol.53 (2), p.1-35, Article 28</ispartof><rights>ACM</rights><rights>Copyright Association for Computing Machinery Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a345t-8abbd4f9aa7d2ace73bdfe0746a32b9ea46a72590babd65d225f37cc17b8eba13</cites><orcidid>0000-0002-8759-7107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3379504$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,2281,27923,27924,40195,75999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34421185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Sheng, Victor S.</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Dadakova, Tetiana</creatorcontrib><creatorcontrib>Swisher, Christine Leon</creatorcontrib><creatorcontrib>Cui, Zhiming</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><title>Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><addtitle>ACM Comput Surv</addtitle><description>Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Classification</subject><subject>Computer science</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Machine learning theory</subject><subject>Sampling</subject><subject>Theory and algorithms for application domains</subject><subject>Theory of computation</subject><subject>Training</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLxDAUBeAgio4P3LuQggvdVPNOZ6MMg4-BETe6DjdpOkbaRpNW8N9bmXF8rBK4Xw43HIQOCT4nhIsLxtRYYL6BRkQIlSvGySYaYSZxjhnGO2g3pReMMeVEbqMdxjklpBAjdHXf153P52BcnU1s599dNncQW98uskm9CNF3z03KqhCzWQMLl01rSMlX3kLnQ7uPtiqokztYnXvo6eb6cXqXzx9uZ9PJPAfGRZcXYEzJqzGAKilYp5gpK4cVl8CoGTsYLoqKMTZgSilKSkXFlLVEmcIZIGwPXS5zX3vTuNK6totQ69foG4gfOoDXfyetf9aL8K4LpiQpvgLOVgExvPUudbrxybq6htaFPmkqJFNYEioGevKPvoQ-tsP3BqUkk4pzPKjTpbIxpBRdtV6GYP1Vil6VMsjj37uv3XcLAzhaArDNz3T1-hMFUI8j</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wu, Jian</creator><creator>Sheng, Victor S.</creator><creator>Zhang, Jing</creator><creator>Li, Hua</creator><creator>Dadakova, Tetiana</creator><creator>Swisher, Christine Leon</creator><creator>Cui, Zhiming</creator><creator>Zhao, Pengpeng</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8759-7107</orcidid></search><sort><creationdate>20200601</creationdate><title>Multi-Label Active Learning Algorithms for Image Classification</title><author>Wu, Jian ; Sheng, Victor S. ; Zhang, Jing ; Li, Hua ; Dadakova, Tetiana ; Swisher, Christine Leon ; Cui, Zhiming ; Zhao, Pengpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-8abbd4f9aa7d2ace73bdfe0746a32b9ea46a72590babd65d225f37cc17b8eba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Classification</topic><topic>Computer science</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Machine learning theory</topic><topic>Sampling</topic><topic>Theory and algorithms for application domains</topic><topic>Theory of computation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Sheng, Victor S.</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Dadakova, Tetiana</creatorcontrib><creatorcontrib>Swisher, Christine Leon</creatorcontrib><creatorcontrib>Cui, Zhiming</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jian</au><au>Sheng, Victor S.</au><au>Zhang, Jing</au><au>Li, Hua</au><au>Dadakova, Tetiana</au><au>Swisher, Christine Leon</au><au>Cui, Zhiming</au><au>Zhao, Pengpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><addtitle>ACM Comput Surv</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><artnum>28</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><pmid>34421185</pmid><doi>10.1145/3379504</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-8759-7107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2020-06, Vol.53 (2), p.1-35, Article 28
issn 0360-0300
1557-7341
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376181
source ACM Digital Library Complete
subjects Active learning
Algorithms
Annotations
Classification
Computer science
Image classification
Machine learning
Machine learning theory
Sampling
Theory and algorithms for application domains
Theory of computation
Training
title Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Label%20Active%20Learning%20Algorithms%20for%20Image%20Classification:%20Overview%20and%20Future%20Promise&rft.jtitle=ACM%20computing%20surveys&rft.au=Wu,%20Jian&rft.date=2020-06-01&rft.volume=53&rft.issue=2&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.artnum=28&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3379504&rft_dat=%3Cproquest_pubme%3E2576367440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576367440&rft_id=info:pmid/34421185&rfr_iscdi=true