Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise
Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an e...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2020-06, Vol.53 (2), p.1-35, Article 28 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 53 |
creator | Wu, Jian Sheng, Victor S. Zhang, Jing Li, Hua Dadakova, Tetiana Swisher, Christine Leon Cui, Zhiming Zhao, Pengpeng |
description | Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension. |
doi_str_mv | 10.1145/3379504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576367440</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-8abbd4f9aa7d2ace73bdfe0746a32b9ea46a72590babd65d225f37cc17b8eba13</originalsourceid><addsrcrecordid>eNpd0UtLxDAUBeAgio4P3LuQggvdVPNOZ6MMg4-BETe6DjdpOkbaRpNW8N9bmXF8rBK4Xw43HIQOCT4nhIsLxtRYYL6BRkQIlSvGySYaYSZxjhnGO2g3pReMMeVEbqMdxjklpBAjdHXf153P52BcnU1s599dNncQW98uskm9CNF3z03KqhCzWQMLl01rSMlX3kLnQ7uPtiqokztYnXvo6eb6cXqXzx9uZ9PJPAfGRZcXYEzJqzGAKilYp5gpK4cVl8CoGTsYLoqKMTZgSilKSkXFlLVEmcIZIGwPXS5zX3vTuNK6totQ69foG4gfOoDXfyetf9aL8K4LpiQpvgLOVgExvPUudbrxybq6htaFPmkqJFNYEioGevKPvoQ-tsP3BqUkk4pzPKjTpbIxpBRdtV6GYP1Vil6VMsjj37uv3XcLAzhaArDNz3T1-hMFUI8j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576367440</pqid></control><display><type>article</type><title>Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise</title><source>ACM Digital Library Complete</source><creator>Wu, Jian ; Sheng, Victor S. ; Zhang, Jing ; Li, Hua ; Dadakova, Tetiana ; Swisher, Christine Leon ; Cui, Zhiming ; Zhao, Pengpeng</creator><creatorcontrib>Wu, Jian ; Sheng, Victor S. ; Zhang, Jing ; Li, Hua ; Dadakova, Tetiana ; Swisher, Christine Leon ; Cui, Zhiming ; Zhao, Pengpeng</creatorcontrib><description>Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3379504</identifier><identifier>PMID: 34421185</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Active learning ; Algorithms ; Annotations ; Classification ; Computer science ; Image classification ; Machine learning ; Machine learning theory ; Sampling ; Theory and algorithms for application domains ; Theory of computation ; Training</subject><ispartof>ACM computing surveys, 2020-06, Vol.53 (2), p.1-35, Article 28</ispartof><rights>ACM</rights><rights>Copyright Association for Computing Machinery Jun 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a345t-8abbd4f9aa7d2ace73bdfe0746a32b9ea46a72590babd65d225f37cc17b8eba13</cites><orcidid>0000-0002-8759-7107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3379504$$EPDF$$P50$$Gacm$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,885,2281,27923,27924,40195,75999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34421185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Sheng, Victor S.</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Dadakova, Tetiana</creatorcontrib><creatorcontrib>Swisher, Christine Leon</creatorcontrib><creatorcontrib>Cui, Zhiming</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><title>Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><addtitle>ACM Comput Surv</addtitle><description>Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Classification</subject><subject>Computer science</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Machine learning theory</subject><subject>Sampling</subject><subject>Theory and algorithms for application domains</subject><subject>Theory of computation</subject><subject>Training</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLxDAUBeAgio4P3LuQggvdVPNOZ6MMg4-BETe6DjdpOkbaRpNW8N9bmXF8rBK4Xw43HIQOCT4nhIsLxtRYYL6BRkQIlSvGySYaYSZxjhnGO2g3pReMMeVEbqMdxjklpBAjdHXf153P52BcnU1s599dNncQW98uskm9CNF3z03KqhCzWQMLl01rSMlX3kLnQ7uPtiqokztYnXvo6eb6cXqXzx9uZ9PJPAfGRZcXYEzJqzGAKilYp5gpK4cVl8CoGTsYLoqKMTZgSilKSkXFlLVEmcIZIGwPXS5zX3vTuNK6totQ69foG4gfOoDXfyetf9aL8K4LpiQpvgLOVgExvPUudbrxybq6htaFPmkqJFNYEioGevKPvoQ-tsP3BqUkk4pzPKjTpbIxpBRdtV6GYP1Vil6VMsjj37uv3XcLAzhaArDNz3T1-hMFUI8j</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Wu, Jian</creator><creator>Sheng, Victor S.</creator><creator>Zhang, Jing</creator><creator>Li, Hua</creator><creator>Dadakova, Tetiana</creator><creator>Swisher, Christine Leon</creator><creator>Cui, Zhiming</creator><creator>Zhao, Pengpeng</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8759-7107</orcidid></search><sort><creationdate>20200601</creationdate><title>Multi-Label Active Learning Algorithms for Image Classification</title><author>Wu, Jian ; Sheng, Victor S. ; Zhang, Jing ; Li, Hua ; Dadakova, Tetiana ; Swisher, Christine Leon ; Cui, Zhiming ; Zhao, Pengpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-8abbd4f9aa7d2ace73bdfe0746a32b9ea46a72590babd65d225f37cc17b8eba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Classification</topic><topic>Computer science</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Machine learning theory</topic><topic>Sampling</topic><topic>Theory and algorithms for application domains</topic><topic>Theory of computation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jian</creatorcontrib><creatorcontrib>Sheng, Victor S.</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Li, Hua</creatorcontrib><creatorcontrib>Dadakova, Tetiana</creatorcontrib><creatorcontrib>Swisher, Christine Leon</creatorcontrib><creatorcontrib>Cui, Zhiming</creatorcontrib><creatorcontrib>Zhao, Pengpeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jian</au><au>Sheng, Victor S.</au><au>Zhang, Jing</au><au>Li, Hua</au><au>Dadakova, Tetiana</au><au>Swisher, Christine Leon</au><au>Cui, Zhiming</au><au>Zhao, Pengpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><addtitle>ACM Comput Surv</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>53</volume><issue>2</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><artnum>28</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Image classification is a key task in image understanding, and multi-label image classification has become a popular topic in recent years. However, the success of multi-label image classification is closely related to the way of constructing a training set. As active learning aims to construct an effective training set through iteratively selecting the most informative examples to query labels from annotators, it was introduced into multi-label image classification. Accordingly, multi-label active learning is becoming an important research direction. In this work, we first review existing multi-label active learning algorithms for image classification. These algorithms can be categorized into two top groups from two aspects respectively: sampling and annotation. The most important component of multi-label active learning is to design an effective sampling strategy that actively selects the examples with the highest informativeness from an unlabeled data pool, according to various information measures. Thus, different informativeness measures are emphasized in this survey. Furthermore, this work also makes a deep investigation on existing challenging issues and future promises in multi-label active learning with a focus on four core aspects: example dimension, label dimension, annotation, and application extension.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><pmid>34421185</pmid><doi>10.1145/3379504</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-8759-7107</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2020-06, Vol.53 (2), p.1-35, Article 28 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376181 |
source | ACM Digital Library Complete |
subjects | Active learning Algorithms Annotations Classification Computer science Image classification Machine learning Machine learning theory Sampling Theory and algorithms for application domains Theory of computation Training |
title | Multi-Label Active Learning Algorithms for Image Classification: Overview and Future Promise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Label%20Active%20Learning%20Algorithms%20for%20Image%20Classification:%20Overview%20and%20Future%20Promise&rft.jtitle=ACM%20computing%20surveys&rft.au=Wu,%20Jian&rft.date=2020-06-01&rft.volume=53&rft.issue=2&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.artnum=28&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3379504&rft_dat=%3Cproquest_pubme%3E2576367440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576367440&rft_id=info:pmid/34421185&rfr_iscdi=true |