A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing
We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms' CPT behaviour. To construct the data-driven CPT model,...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2021-08, Vol.18 (181), p.20210171-20210171 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20210171 |
---|---|
container_issue | 181 |
container_start_page | 20210171 |
container_title | Journal of the Royal Society interface |
container_volume | 18 |
creator | Okajima, Kei Shigaki, Shunsuke Suko, Takanobu Luong, Duc-Nhat Hernandez Reyes, Cesar Hattori, Yuya Sanada, Kazushi Kurabayashi, Daisuke |
description | We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms' CPT behaviour. To construct the data-driven CPT model, a training dataset of the odour stimuli input toward the organism is needed, along with an output of the organism's CPT behaviour. To this end, we constructed a measurement system comprising an array of alcohol sensors for the measurement of the input and a camera for tracking the output in a real scenario. Then, we determined a transfer function describing the input-output relationship as a stochastic process by applying Gaussian process regression, and established the data-driven CPT model based on measurements of the organism's CPT behaviour. Through CPT experiments in simulations and a real environment, we evaluated the performance of the data-driven CPT model and compared its success rate with those obtained from conventional model-based strategies. As a result, the proposed data-driven CPT model demonstrated a better success rate than those obtained from conventional model-based strategies. Moreover, we considered that the data-driven CPT model could reflect the aspect of an organism's adaptability that modulated its behaviour with respect to the surrounding environment. However, these useful results came from the CPT experiments conducted in simple settings of simulations and a real environment. If making the condition of the CPT experiments more complex, we confirmed that the data-driven CPT model would be less effective for locating an odour source. In this way, this paper not only poses major contributions toward the development of a novel framework based on a data-driven approach for modelling an organism's CPT behaviour, but also displays a research limitation of a data-driven approach at this stage. |
doi_str_mv | 10.1098/rsif.2021.0171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8371372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562519481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-dea7ca3753a6e3ccebb21acece61079783ecaa1d26b6c7ca218b7482c097adf13</originalsourceid><addsrcrecordid>eNpVkctPwzAMxiMEYryuHFGOXDryaJvugjQhXtIkLnCO3NRdA21TknaI_55Wg2mcbMufP9v6EXLJ2ZyzRXbjgy3nggk-Z1zxA3LCVSyiJE3F4V4-I6chvDMmlUySYzKTccxiIdQJ6Ze0dRusaemhwS_nP2gOAQvqWgq0gB6iwtsNjlXXeQemoqXztHEF1rVt17SvkOZYwca6wVNXUufX0NrQBGpbaipsrIGadvXQIO09mHHonByVUAe8-I1n5O3h_vXuKVq9PD7fLVeRiVXWRwWCMiBVIiFFaQzmueBg0GDKmVqoTKIB4IVI89SMSsGzXMWZMGyhoCi5PCO3W99uyBssDLbjAbXuvG3Af2sHVv_vtLbSa7fRmVRcKjEaXP8aePc5YOh1Y4MZP4cW3RC0SFKR8EWcTbvmW6nxLgSP5W4NZ3pCpSdUekKlJ1TjwNX-cTv5Hxv5A9EVk8U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562519481</pqid></control><display><type>article</type><title>A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing</title><source>MEDLINE</source><source>PubMed Central</source><creator>Okajima, Kei ; Shigaki, Shunsuke ; Suko, Takanobu ; Luong, Duc-Nhat ; Hernandez Reyes, Cesar ; Hattori, Yuya ; Sanada, Kazushi ; Kurabayashi, Daisuke</creator><creatorcontrib>Okajima, Kei ; Shigaki, Shunsuke ; Suko, Takanobu ; Luong, Duc-Nhat ; Hernandez Reyes, Cesar ; Hattori, Yuya ; Sanada, Kazushi ; Kurabayashi, Daisuke</creatorcontrib><description>We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms' CPT behaviour. To construct the data-driven CPT model, a training dataset of the odour stimuli input toward the organism is needed, along with an output of the organism's CPT behaviour. To this end, we constructed a measurement system comprising an array of alcohol sensors for the measurement of the input and a camera for tracking the output in a real scenario. Then, we determined a transfer function describing the input-output relationship as a stochastic process by applying Gaussian process regression, and established the data-driven CPT model based on measurements of the organism's CPT behaviour. Through CPT experiments in simulations and a real environment, we evaluated the performance of the data-driven CPT model and compared its success rate with those obtained from conventional model-based strategies. As a result, the proposed data-driven CPT model demonstrated a better success rate than those obtained from conventional model-based strategies. Moreover, we considered that the data-driven CPT model could reflect the aspect of an organism's adaptability that modulated its behaviour with respect to the surrounding environment. However, these useful results came from the CPT experiments conducted in simple settings of simulations and a real environment. If making the condition of the CPT experiments more complex, we confirmed that the data-driven CPT model would be less effective for locating an odour source. In this way, this paper not only poses major contributions toward the development of a novel framework based on a data-driven approach for modelling an organism's CPT behaviour, but also displays a research limitation of a data-driven approach at this stage.</description><identifier>ISSN: 1742-5662</identifier><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2021.0171</identifier><identifier>PMID: 34404227</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Animals ; Behavior, Animal ; Life Sciences–Engineering interface ; Odorants ; Smell</subject><ispartof>Journal of the Royal Society interface, 2021-08, Vol.18 (181), p.20210171-20210171</ispartof><rights>2021 The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-dea7ca3753a6e3ccebb21acece61079783ecaa1d26b6c7ca218b7482c097adf13</citedby><cites>FETCH-LOGICAL-c478t-dea7ca3753a6e3ccebb21acece61079783ecaa1d26b6c7ca218b7482c097adf13</cites><orcidid>0000-0002-6688-9514 ; 0000-0002-6927-980X ; 0000-0003-3776-4031 ; 0000-0002-5689-1338 ; 0000-0002-6514-6399 ; 0000-0003-4466-2818 ; 0000-0002-3186-6531 ; 0000-0001-8752-738X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371372/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371372/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34404227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okajima, Kei</creatorcontrib><creatorcontrib>Shigaki, Shunsuke</creatorcontrib><creatorcontrib>Suko, Takanobu</creatorcontrib><creatorcontrib>Luong, Duc-Nhat</creatorcontrib><creatorcontrib>Hernandez Reyes, Cesar</creatorcontrib><creatorcontrib>Hattori, Yuya</creatorcontrib><creatorcontrib>Sanada, Kazushi</creatorcontrib><creatorcontrib>Kurabayashi, Daisuke</creatorcontrib><title>A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms' CPT behaviour. To construct the data-driven CPT model, a training dataset of the odour stimuli input toward the organism is needed, along with an output of the organism's CPT behaviour. To this end, we constructed a measurement system comprising an array of alcohol sensors for the measurement of the input and a camera for tracking the output in a real scenario. Then, we determined a transfer function describing the input-output relationship as a stochastic process by applying Gaussian process regression, and established the data-driven CPT model based on measurements of the organism's CPT behaviour. Through CPT experiments in simulations and a real environment, we evaluated the performance of the data-driven CPT model and compared its success rate with those obtained from conventional model-based strategies. As a result, the proposed data-driven CPT model demonstrated a better success rate than those obtained from conventional model-based strategies. Moreover, we considered that the data-driven CPT model could reflect the aspect of an organism's adaptability that modulated its behaviour with respect to the surrounding environment. However, these useful results came from the CPT experiments conducted in simple settings of simulations and a real environment. If making the condition of the CPT experiments more complex, we confirmed that the data-driven CPT model would be less effective for locating an odour source. In this way, this paper not only poses major contributions toward the development of a novel framework based on a data-driven approach for modelling an organism's CPT behaviour, but also displays a research limitation of a data-driven approach at this stage.</description><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Life Sciences–Engineering interface</subject><subject>Odorants</subject><subject>Smell</subject><issn>1742-5662</issn><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctPwzAMxiMEYryuHFGOXDryaJvugjQhXtIkLnCO3NRdA21TknaI_55Wg2mcbMufP9v6EXLJ2ZyzRXbjgy3nggk-Z1zxA3LCVSyiJE3F4V4-I6chvDMmlUySYzKTccxiIdQJ6Ze0dRusaemhwS_nP2gOAQvqWgq0gB6iwtsNjlXXeQemoqXztHEF1rVt17SvkOZYwca6wVNXUufX0NrQBGpbaipsrIGadvXQIO09mHHonByVUAe8-I1n5O3h_vXuKVq9PD7fLVeRiVXWRwWCMiBVIiFFaQzmueBg0GDKmVqoTKIB4IVI89SMSsGzXMWZMGyhoCi5PCO3W99uyBssDLbjAbXuvG3Af2sHVv_vtLbSa7fRmVRcKjEaXP8aePc5YOh1Y4MZP4cW3RC0SFKR8EWcTbvmW6nxLgSP5W4NZ3pCpSdUekKlJ1TjwNX-cTv5Hxv5A9EVk8U</recordid><startdate>20210818</startdate><enddate>20210818</enddate><creator>Okajima, Kei</creator><creator>Shigaki, Shunsuke</creator><creator>Suko, Takanobu</creator><creator>Luong, Duc-Nhat</creator><creator>Hernandez Reyes, Cesar</creator><creator>Hattori, Yuya</creator><creator>Sanada, Kazushi</creator><creator>Kurabayashi, Daisuke</creator><general>The Royal Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6688-9514</orcidid><orcidid>https://orcid.org/0000-0002-6927-980X</orcidid><orcidid>https://orcid.org/0000-0003-3776-4031</orcidid><orcidid>https://orcid.org/0000-0002-5689-1338</orcidid><orcidid>https://orcid.org/0000-0002-6514-6399</orcidid><orcidid>https://orcid.org/0000-0003-4466-2818</orcidid><orcidid>https://orcid.org/0000-0002-3186-6531</orcidid><orcidid>https://orcid.org/0000-0001-8752-738X</orcidid></search><sort><creationdate>20210818</creationdate><title>A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing</title><author>Okajima, Kei ; Shigaki, Shunsuke ; Suko, Takanobu ; Luong, Duc-Nhat ; Hernandez Reyes, Cesar ; Hattori, Yuya ; Sanada, Kazushi ; Kurabayashi, Daisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-dea7ca3753a6e3ccebb21acece61079783ecaa1d26b6c7ca218b7482c097adf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Life Sciences–Engineering interface</topic><topic>Odorants</topic><topic>Smell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okajima, Kei</creatorcontrib><creatorcontrib>Shigaki, Shunsuke</creatorcontrib><creatorcontrib>Suko, Takanobu</creatorcontrib><creatorcontrib>Luong, Duc-Nhat</creatorcontrib><creatorcontrib>Hernandez Reyes, Cesar</creatorcontrib><creatorcontrib>Hattori, Yuya</creatorcontrib><creatorcontrib>Sanada, Kazushi</creatorcontrib><creatorcontrib>Kurabayashi, Daisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okajima, Kei</au><au>Shigaki, Shunsuke</au><au>Suko, Takanobu</au><au>Luong, Duc-Nhat</au><au>Hernandez Reyes, Cesar</au><au>Hattori, Yuya</au><au>Sanada, Kazushi</au><au>Kurabayashi, Daisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2021-08-18</date><risdate>2021</risdate><volume>18</volume><issue>181</issue><spage>20210171</spage><epage>20210171</epage><pages>20210171-20210171</pages><issn>1742-5662</issn><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>We propose a data-driven approach for modelling an organism's behaviour instead of conventional model-based strategies in chemical plume tracing (CPT). CPT models based on this approach show promise in faithfully reproducing organisms' CPT behaviour. To construct the data-driven CPT model, a training dataset of the odour stimuli input toward the organism is needed, along with an output of the organism's CPT behaviour. To this end, we constructed a measurement system comprising an array of alcohol sensors for the measurement of the input and a camera for tracking the output in a real scenario. Then, we determined a transfer function describing the input-output relationship as a stochastic process by applying Gaussian process regression, and established the data-driven CPT model based on measurements of the organism's CPT behaviour. Through CPT experiments in simulations and a real environment, we evaluated the performance of the data-driven CPT model and compared its success rate with those obtained from conventional model-based strategies. As a result, the proposed data-driven CPT model demonstrated a better success rate than those obtained from conventional model-based strategies. Moreover, we considered that the data-driven CPT model could reflect the aspect of an organism's adaptability that modulated its behaviour with respect to the surrounding environment. However, these useful results came from the CPT experiments conducted in simple settings of simulations and a real environment. If making the condition of the CPT experiments more complex, we confirmed that the data-driven CPT model would be less effective for locating an odour source. In this way, this paper not only poses major contributions toward the development of a novel framework based on a data-driven approach for modelling an organism's CPT behaviour, but also displays a research limitation of a data-driven approach at this stage.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>34404227</pmid><doi>10.1098/rsif.2021.0171</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6688-9514</orcidid><orcidid>https://orcid.org/0000-0002-6927-980X</orcidid><orcidid>https://orcid.org/0000-0003-3776-4031</orcidid><orcidid>https://orcid.org/0000-0002-5689-1338</orcidid><orcidid>https://orcid.org/0000-0002-6514-6399</orcidid><orcidid>https://orcid.org/0000-0003-4466-2818</orcidid><orcidid>https://orcid.org/0000-0002-3186-6531</orcidid><orcidid>https://orcid.org/0000-0001-8752-738X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5662 |
ispartof | Journal of the Royal Society interface, 2021-08, Vol.18 (181), p.20210171-20210171 |
issn | 1742-5662 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8371372 |
source | MEDLINE; PubMed Central |
subjects | Animals Behavior, Animal Life Sciences–Engineering interface Odorants Smell |
title | A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20framework%20based%20on%20a%20data-driven%20approach%20for%20modelling%20the%20behaviour%20of%20organisms%20in%20chemical%20plume%20tracing&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Okajima,%20Kei&rft.date=2021-08-18&rft.volume=18&rft.issue=181&rft.spage=20210171&rft.epage=20210171&rft.pages=20210171-20210171&rft.issn=1742-5662&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2021.0171&rft_dat=%3Cproquest_pubme%3E2562519481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562519481&rft_id=info:pmid/34404227&rfr_iscdi=true |