A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex

RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a cataly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RNA (Cambridge) 2021-09, Vol.27 (9), p.1046-1067
Hauptverfasser: Sterrett, Maria C, Enyenihi, Liz, Leung, Sara W, Hess, Laurie, Strassler, Sarah E, Farchi, Daniela, Lee, Richard S, Withers, Elise S, Kremsky, Isaac, Baker, Richard E, Basrai, Munira A, van Hoof, Ambro, Fasken, Milo B, Corbett, Anita H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 9
container_start_page 1046
container_title RNA (Cambridge)
container_volume 27
creator Sterrett, Maria C
Enyenihi, Liz
Leung, Sara W
Hess, Laurie
Strassler, Sarah E
Farchi, Daniela
Lee, Richard S
Withers, Elise S
Kremsky, Isaac
Baker, Richard E
Basrai, Munira A
van Hoof, Ambro
Fasken, Milo B
Corbett, Anita H
description RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF ( hort stature, earing loss, etinitis pigmentosa, and distinctive acies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous gene The resulting mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in cells that model p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.
doi_str_mv 10.1261/rna.078618.120
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8370739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2571136174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1441aa2b6e0e744a6bf0c4a85913393d11f0d27fb3fb00a06810e8c29cea9fec3</originalsourceid><addsrcrecordid>eNpVUUtLxDAQDqL4WL16lIDnrpkk26YXYVnWB4iCD_AW0nTiVtpmbVpx_73RXUVP8_i--WaYj5BjYGPgKZx1rRmzTKWgYs22yD7INE9yxmA75mIySZRQfI8chPAamyLCu2RPSEh5Jvk-cVNaDGVZtS90hSb0tPEl1tT5ji6GxrS0rELsI22G3vSVbwOtWtovkM6f7x5mnFqzpGEohrbqqXffyP3tlOKHD75Ban2zrPHjkOw4Uwc82sQRebqYP86ukpu7y-vZ9CaxElSfgJRgDC9SZJhJadLCMSuNmuQgRC5KAMdKnrlCuIIxw1IFDJXluUWTO7RiRM7XusuhaLC02PadqfWyqxrTrbQ3lf6PtNVCv_h3rUTGsrhiRE43Ap1_GzD0-tUP8cl10HySAYgUMhlZ4zXLdj6EDt3vBmD6yxcdR_Tal1izOHDy965f-o8R4hPeNYnU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571136174</pqid></control><display><type>article</type><title>A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sterrett, Maria C ; Enyenihi, Liz ; Leung, Sara W ; Hess, Laurie ; Strassler, Sarah E ; Farchi, Daniela ; Lee, Richard S ; Withers, Elise S ; Kremsky, Isaac ; Baker, Richard E ; Basrai, Munira A ; van Hoof, Ambro ; Fasken, Milo B ; Corbett, Anita H</creator><creatorcontrib>Sterrett, Maria C ; Enyenihi, Liz ; Leung, Sara W ; Hess, Laurie ; Strassler, Sarah E ; Farchi, Daniela ; Lee, Richard S ; Withers, Elise S ; Kremsky, Isaac ; Baker, Richard E ; Basrai, Munira A ; van Hoof, Ambro ; Fasken, Milo B ; Corbett, Anita H</creatorcontrib><description>RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF ( hort stature, earing loss, etinitis pigmentosa, and distinctive acies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous gene The resulting mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in cells that model p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.078618.120</identifier><identifier>PMID: 34162742</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Amino acids ; Aspartic Acid - chemistry ; Aspartic Acid - metabolism ; Cofactors ; Dwarfism - enzymology ; Dwarfism - genetics ; Dwarfism - pathology ; Exoribonucleases - chemistry ; Exoribonucleases - genetics ; Exoribonucleases - metabolism ; Exosome Multienzyme Ribonuclease Complex - chemistry ; Exosome Multienzyme Ribonuclease Complex - genetics ; Exosome Multienzyme Ribonuclease Complex - metabolism ; Facies ; Gene Expression ; Genes ; Genetic analysis ; Glycine - chemistry ; Glycine - metabolism ; Hearing loss ; Hearing Loss - enzymology ; Hearing Loss - genetics ; Hearing Loss - pathology ; Humans ; Hypoplasia ; Missense mutation ; Models, Biological ; Models, Molecular ; Mutation ; Mutation, Missense ; Protein Conformation ; Retinitis ; Retinitis pigmentosa ; Retinitis Pigmentosa - enzymology ; Retinitis Pigmentosa - genetics ; Retinitis Pigmentosa - pathology ; Ribonucleic acid ; RNA ; RNA, Fungal - chemistry ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Homology, Amino Acid ; Syndrome ; Transcriptomics</subject><ispartof>RNA (Cambridge), 2021-09, Vol.27 (9), p.1046-1067</ispartof><rights>2021 Sterrett et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Sep 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-1441aa2b6e0e744a6bf0c4a85913393d11f0d27fb3fb00a06810e8c29cea9fec3</citedby><cites>FETCH-LOGICAL-c418t-1441aa2b6e0e744a6bf0c4a85913393d11f0d27fb3fb00a06810e8c29cea9fec3</cites><orcidid>0000-0002-0346-181X ; 0000-0002-9772-2426 ; 0000-0002-0461-6895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370739/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370739/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34162742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sterrett, Maria C</creatorcontrib><creatorcontrib>Enyenihi, Liz</creatorcontrib><creatorcontrib>Leung, Sara W</creatorcontrib><creatorcontrib>Hess, Laurie</creatorcontrib><creatorcontrib>Strassler, Sarah E</creatorcontrib><creatorcontrib>Farchi, Daniela</creatorcontrib><creatorcontrib>Lee, Richard S</creatorcontrib><creatorcontrib>Withers, Elise S</creatorcontrib><creatorcontrib>Kremsky, Isaac</creatorcontrib><creatorcontrib>Baker, Richard E</creatorcontrib><creatorcontrib>Basrai, Munira A</creatorcontrib><creatorcontrib>van Hoof, Ambro</creatorcontrib><creatorcontrib>Fasken, Milo B</creatorcontrib><creatorcontrib>Corbett, Anita H</creatorcontrib><title>A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF ( hort stature, earing loss, etinitis pigmentosa, and distinctive acies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous gene The resulting mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in cells that model p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Aspartic Acid - chemistry</subject><subject>Aspartic Acid - metabolism</subject><subject>Cofactors</subject><subject>Dwarfism - enzymology</subject><subject>Dwarfism - genetics</subject><subject>Dwarfism - pathology</subject><subject>Exoribonucleases - chemistry</subject><subject>Exoribonucleases - genetics</subject><subject>Exoribonucleases - metabolism</subject><subject>Exosome Multienzyme Ribonuclease Complex - chemistry</subject><subject>Exosome Multienzyme Ribonuclease Complex - genetics</subject><subject>Exosome Multienzyme Ribonuclease Complex - metabolism</subject><subject>Facies</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Glycine - chemistry</subject><subject>Glycine - metabolism</subject><subject>Hearing loss</subject><subject>Hearing Loss - enzymology</subject><subject>Hearing Loss - genetics</subject><subject>Hearing Loss - pathology</subject><subject>Humans</subject><subject>Hypoplasia</subject><subject>Missense mutation</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Protein Conformation</subject><subject>Retinitis</subject><subject>Retinitis pigmentosa</subject><subject>Retinitis Pigmentosa - enzymology</subject><subject>Retinitis Pigmentosa - genetics</subject><subject>Retinitis Pigmentosa - pathology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Fungal - chemistry</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Syndrome</subject><subject>Transcriptomics</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtLxDAQDqL4WL16lIDnrpkk26YXYVnWB4iCD_AW0nTiVtpmbVpx_73RXUVP8_i--WaYj5BjYGPgKZx1rRmzTKWgYs22yD7INE9yxmA75mIySZRQfI8chPAamyLCu2RPSEh5Jvk-cVNaDGVZtS90hSb0tPEl1tT5ji6GxrS0rELsI22G3vSVbwOtWtovkM6f7x5mnFqzpGEohrbqqXffyP3tlOKHD75Ban2zrPHjkOw4Uwc82sQRebqYP86ukpu7y-vZ9CaxElSfgJRgDC9SZJhJadLCMSuNmuQgRC5KAMdKnrlCuIIxw1IFDJXluUWTO7RiRM7XusuhaLC02PadqfWyqxrTrbQ3lf6PtNVCv_h3rUTGsrhiRE43Ap1_GzD0-tUP8cl10HySAYgUMhlZ4zXLdj6EDt3vBmD6yxcdR_Tal1izOHDy965f-o8R4hPeNYnU</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Sterrett, Maria C</creator><creator>Enyenihi, Liz</creator><creator>Leung, Sara W</creator><creator>Hess, Laurie</creator><creator>Strassler, Sarah E</creator><creator>Farchi, Daniela</creator><creator>Lee, Richard S</creator><creator>Withers, Elise S</creator><creator>Kremsky, Isaac</creator><creator>Baker, Richard E</creator><creator>Basrai, Munira A</creator><creator>van Hoof, Ambro</creator><creator>Fasken, Milo B</creator><creator>Corbett, Anita H</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0346-181X</orcidid><orcidid>https://orcid.org/0000-0002-9772-2426</orcidid><orcidid>https://orcid.org/0000-0002-0461-6895</orcidid></search><sort><creationdate>202109</creationdate><title>A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex</title><author>Sterrett, Maria C ; Enyenihi, Liz ; Leung, Sara W ; Hess, Laurie ; Strassler, Sarah E ; Farchi, Daniela ; Lee, Richard S ; Withers, Elise S ; Kremsky, Isaac ; Baker, Richard E ; Basrai, Munira A ; van Hoof, Ambro ; Fasken, Milo B ; Corbett, Anita H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1441aa2b6e0e744a6bf0c4a85913393d11f0d27fb3fb00a06810e8c29cea9fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Aspartic Acid - chemistry</topic><topic>Aspartic Acid - metabolism</topic><topic>Cofactors</topic><topic>Dwarfism - enzymology</topic><topic>Dwarfism - genetics</topic><topic>Dwarfism - pathology</topic><topic>Exoribonucleases - chemistry</topic><topic>Exoribonucleases - genetics</topic><topic>Exoribonucleases - metabolism</topic><topic>Exosome Multienzyme Ribonuclease Complex - chemistry</topic><topic>Exosome Multienzyme Ribonuclease Complex - genetics</topic><topic>Exosome Multienzyme Ribonuclease Complex - metabolism</topic><topic>Facies</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Glycine - chemistry</topic><topic>Glycine - metabolism</topic><topic>Hearing loss</topic><topic>Hearing Loss - enzymology</topic><topic>Hearing Loss - genetics</topic><topic>Hearing Loss - pathology</topic><topic>Humans</topic><topic>Hypoplasia</topic><topic>Missense mutation</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Protein Conformation</topic><topic>Retinitis</topic><topic>Retinitis pigmentosa</topic><topic>Retinitis Pigmentosa - enzymology</topic><topic>Retinitis Pigmentosa - genetics</topic><topic>Retinitis Pigmentosa - pathology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Fungal - chemistry</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Syndrome</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sterrett, Maria C</creatorcontrib><creatorcontrib>Enyenihi, Liz</creatorcontrib><creatorcontrib>Leung, Sara W</creatorcontrib><creatorcontrib>Hess, Laurie</creatorcontrib><creatorcontrib>Strassler, Sarah E</creatorcontrib><creatorcontrib>Farchi, Daniela</creatorcontrib><creatorcontrib>Lee, Richard S</creatorcontrib><creatorcontrib>Withers, Elise S</creatorcontrib><creatorcontrib>Kremsky, Isaac</creatorcontrib><creatorcontrib>Baker, Richard E</creatorcontrib><creatorcontrib>Basrai, Munira A</creatorcontrib><creatorcontrib>van Hoof, Ambro</creatorcontrib><creatorcontrib>Fasken, Milo B</creatorcontrib><creatorcontrib>Corbett, Anita H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sterrett, Maria C</au><au>Enyenihi, Liz</au><au>Leung, Sara W</au><au>Hess, Laurie</au><au>Strassler, Sarah E</au><au>Farchi, Daniela</au><au>Lee, Richard S</au><au>Withers, Elise S</au><au>Kremsky, Isaac</au><au>Baker, Richard E</au><au>Basrai, Munira A</au><au>van Hoof, Ambro</au><au>Fasken, Milo B</au><au>Corbett, Anita H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2021-09</date><risdate>2021</risdate><volume>27</volume><issue>9</issue><spage>1046</spage><epage>1067</epage><pages>1046-1067</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>RNA exosomopathies, a growing family of diseases, are linked to missense mutations in genes encoding structural subunits of the evolutionarily conserved, 10-subunit exoribonuclease complex, the RNA exosome. This complex consists of a three-subunit cap, a six-subunit, barrel-shaped core, and a catalytic base subunit. While a number of mutations in RNA exosome genes cause pontocerebellar hypoplasia, mutations in the cap subunit gene cause an apparently distinct clinical presentation that has been defined as a novel syndrome SHRF ( hort stature, earing loss, etinitis pigmentosa, and distinctive acies). We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by modeling pathogenic missense mutations (p.Gly30Val and p.Gly198Asp) in the orthologous gene The resulting mutant cells show defects in cell growth and RNA exosome function. Consistent with altered RNA exosome function, we detect significant transcriptomic changes in both coding and noncoding RNAs in cells that model p.Gly198Asp, suggesting defects in nuclear surveillance. Biochemical and genetic analyses suggest that the Rrp4 G226D variant subunit shows impaired interactions with key RNA exosome cofactors that modulate the function of the complex. These results provide the first in vivo evidence that pathogenic missense mutations present in impair the function of the RNA exosome. This study also sets the stage to compare exosomopathy models to understand how defects in RNA exosome function underlie distinct pathologies.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>34162742</pmid><doi>10.1261/rna.078618.120</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0346-181X</orcidid><orcidid>https://orcid.org/0000-0002-9772-2426</orcidid><orcidid>https://orcid.org/0000-0002-0461-6895</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-8382
ispartof RNA (Cambridge), 2021-09, Vol.27 (9), p.1046-1067
issn 1355-8382
1469-9001
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8370739
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
Amino Acid Substitution
Amino acids
Aspartic Acid - chemistry
Aspartic Acid - metabolism
Cofactors
Dwarfism - enzymology
Dwarfism - genetics
Dwarfism - pathology
Exoribonucleases - chemistry
Exoribonucleases - genetics
Exoribonucleases - metabolism
Exosome Multienzyme Ribonuclease Complex - chemistry
Exosome Multienzyme Ribonuclease Complex - genetics
Exosome Multienzyme Ribonuclease Complex - metabolism
Facies
Gene Expression
Genes
Genetic analysis
Glycine - chemistry
Glycine - metabolism
Hearing loss
Hearing Loss - enzymology
Hearing Loss - genetics
Hearing Loss - pathology
Humans
Hypoplasia
Missense mutation
Models, Biological
Models, Molecular
Mutation
Mutation, Missense
Protein Conformation
Retinitis
Retinitis pigmentosa
Retinitis Pigmentosa - enzymology
Retinitis Pigmentosa - genetics
Retinitis Pigmentosa - pathology
Ribonucleic acid
RNA
RNA, Fungal - chemistry
RNA, Fungal - genetics
RNA, Fungal - metabolism
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Homology, Amino Acid
Syndrome
Transcriptomics
title A budding yeast model for human disease mutations in the EXOSC2 cap subunit of the RNA exosome complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20budding%20yeast%20model%20for%20human%20disease%20mutations%20in%20the%20EXOSC2%20cap%20subunit%20of%20the%20RNA%20exosome%20complex&rft.jtitle=RNA%20(Cambridge)&rft.au=Sterrett,%20Maria%20C&rft.date=2021-09&rft.volume=27&rft.issue=9&rft.spage=1046&rft.epage=1067&rft.pages=1046-1067&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.078618.120&rft_dat=%3Cproquest_pubme%3E2571136174%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571136174&rft_id=info:pmid/34162742&rfr_iscdi=true