Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy
Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) m...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2021-08, Vol.144 (7), p.2060-2073 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2073 |
---|---|
container_issue | 7 |
container_start_page | 2060 |
container_title | Brain (London, England : 1878) |
container_volume | 144 |
creator | Bleakley, Lauren E McKenzie, Chaseley E Soh, Ming S Forster, Ian C Pinares-Garcia, Paulo Sedo, Alicia Kathirvel, Anirudh Churilov, Leonid Jancovski, Nikola Maljevic, Snezana Berkovic, Samuel F Scheffer, Ingrid E Petrou, Steven Santoro, Bina Reid, Christopher A |
description | Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested. |
doi_str_mv | 10.1093/brain/awab145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8370418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509266421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-adbf567a19a70c39c2effcb5ed939b4097d1011d3900d5641d2322cc29d406cd3</originalsourceid><addsrcrecordid>eNpVkUFv1DAQhS0EotvCkSvykUvasZ048QUJrQpFqtpLe7Ym9oQ1eJ1gJ4X99wS6VHCaw_v05kkfY28EnAsw6qLPGNIF_sBe1M0zthG1hkqKRj9nGwDQVWcaOGGnpXwFELWS-iU7UaqTEkBtGG5xDmPikfAbX5KnHAMVnmjJY8LI6acLM_YhhvnAQ-KY-NX2RnBPDxTHaU9pXilMntMUIk1zcJySo2mHa4zz7vCKvRgwFnp9vGfs_uPl3faqur799Hn74bpyqmvnCn0_NLpFYbAFp4yTNAyub8gbZfoaTOsFCOGVAfCNroWXSkrnpPE1aOfVGXv_2Dst_Z68W5dljHbKYY_5YEcM9v8khZ39Mj7YTrVQi24teHcsyOP3hcps96E4ihETjUuxsgEjta6lWNHqEXV5LCXT8PRGgP2txf7RYo9aVv7tv9ue6L8e1C9IhI1d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509266421</pqid></control><display><type>article</type><title>Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Bleakley, Lauren E ; McKenzie, Chaseley E ; Soh, Ming S ; Forster, Ian C ; Pinares-Garcia, Paulo ; Sedo, Alicia ; Kathirvel, Anirudh ; Churilov, Leonid ; Jancovski, Nikola ; Maljevic, Snezana ; Berkovic, Samuel F ; Scheffer, Ingrid E ; Petrou, Steven ; Santoro, Bina ; Reid, Christopher A</creator><creatorcontrib>Bleakley, Lauren E ; McKenzie, Chaseley E ; Soh, Ming S ; Forster, Ian C ; Pinares-Garcia, Paulo ; Sedo, Alicia ; Kathirvel, Anirudh ; Churilov, Leonid ; Jancovski, Nikola ; Maljevic, Snezana ; Berkovic, Samuel F ; Scheffer, Ingrid E ; Petrou, Steven ; Santoro, Bina ; Reid, Christopher A</creatorcontrib><description>Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.</description><identifier>ISSN: 0006-8950</identifier><identifier>EISSN: 1460-2156</identifier><identifier>DOI: 10.1093/brain/awab145</identifier><identifier>PMID: 33822003</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Brain Diseases - genetics ; Brain Diseases - metabolism ; Disease Models, Animal ; Epilepsy - genetics ; Epilepsy - metabolism ; Female ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism ; Male ; Mice ; Mice, Mutant Strains ; Mutation ; Neurons - metabolism ; Neurons - pathology ; Original ; Potassium Channels - genetics ; Potassium Channels - metabolism ; Pyramidal Cells - metabolism ; Xenopus laevis</subject><ispartof>Brain (London, England : 1878), 2021-08, Vol.144 (7), p.2060-2073</ispartof><rights>The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-adbf567a19a70c39c2effcb5ed939b4097d1011d3900d5641d2322cc29d406cd3</citedby><cites>FETCH-LOGICAL-c387t-adbf567a19a70c39c2effcb5ed939b4097d1011d3900d5641d2322cc29d406cd3</cites><orcidid>0000-0002-6918-2346 ; 0000-0002-5689-2082 ; 0000-0002-2143-3265 ; 0000-0001-5611-6860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33822003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bleakley, Lauren E</creatorcontrib><creatorcontrib>McKenzie, Chaseley E</creatorcontrib><creatorcontrib>Soh, Ming S</creatorcontrib><creatorcontrib>Forster, Ian C</creatorcontrib><creatorcontrib>Pinares-Garcia, Paulo</creatorcontrib><creatorcontrib>Sedo, Alicia</creatorcontrib><creatorcontrib>Kathirvel, Anirudh</creatorcontrib><creatorcontrib>Churilov, Leonid</creatorcontrib><creatorcontrib>Jancovski, Nikola</creatorcontrib><creatorcontrib>Maljevic, Snezana</creatorcontrib><creatorcontrib>Berkovic, Samuel F</creatorcontrib><creatorcontrib>Scheffer, Ingrid E</creatorcontrib><creatorcontrib>Petrou, Steven</creatorcontrib><creatorcontrib>Santoro, Bina</creatorcontrib><creatorcontrib>Reid, Christopher A</creatorcontrib><title>Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy</title><title>Brain (London, England : 1878)</title><addtitle>Brain</addtitle><description>Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.</description><subject>Animals</subject><subject>Brain Diseases - genetics</subject><subject>Brain Diseases - metabolism</subject><subject>Disease Models, Animal</subject><subject>Epilepsy - genetics</subject><subject>Epilepsy - metabolism</subject><subject>Female</subject><subject>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics</subject><subject>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mutation</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Original</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - metabolism</subject><subject>Pyramidal Cells - metabolism</subject><subject>Xenopus laevis</subject><issn>0006-8950</issn><issn>1460-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUFv1DAQhS0EotvCkSvykUvasZ048QUJrQpFqtpLe7Ym9oQ1eJ1gJ4X99wS6VHCaw_v05kkfY28EnAsw6qLPGNIF_sBe1M0zthG1hkqKRj9nGwDQVWcaOGGnpXwFELWS-iU7UaqTEkBtGG5xDmPikfAbX5KnHAMVnmjJY8LI6acLM_YhhvnAQ-KY-NX2RnBPDxTHaU9pXilMntMUIk1zcJySo2mHa4zz7vCKvRgwFnp9vGfs_uPl3faqur799Hn74bpyqmvnCn0_NLpFYbAFp4yTNAyub8gbZfoaTOsFCOGVAfCNroWXSkrnpPE1aOfVGXv_2Dst_Z68W5dljHbKYY_5YEcM9v8khZ39Mj7YTrVQi24teHcsyOP3hcps96E4ihETjUuxsgEjta6lWNHqEXV5LCXT8PRGgP2txf7RYo9aVv7tv9ue6L8e1C9IhI1d</recordid><startdate>20210817</startdate><enddate>20210817</enddate><creator>Bleakley, Lauren E</creator><creator>McKenzie, Chaseley E</creator><creator>Soh, Ming S</creator><creator>Forster, Ian C</creator><creator>Pinares-Garcia, Paulo</creator><creator>Sedo, Alicia</creator><creator>Kathirvel, Anirudh</creator><creator>Churilov, Leonid</creator><creator>Jancovski, Nikola</creator><creator>Maljevic, Snezana</creator><creator>Berkovic, Samuel F</creator><creator>Scheffer, Ingrid E</creator><creator>Petrou, Steven</creator><creator>Santoro, Bina</creator><creator>Reid, Christopher A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6918-2346</orcidid><orcidid>https://orcid.org/0000-0002-5689-2082</orcidid><orcidid>https://orcid.org/0000-0002-2143-3265</orcidid><orcidid>https://orcid.org/0000-0001-5611-6860</orcidid></search><sort><creationdate>20210817</creationdate><title>Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy</title><author>Bleakley, Lauren E ; McKenzie, Chaseley E ; Soh, Ming S ; Forster, Ian C ; Pinares-Garcia, Paulo ; Sedo, Alicia ; Kathirvel, Anirudh ; Churilov, Leonid ; Jancovski, Nikola ; Maljevic, Snezana ; Berkovic, Samuel F ; Scheffer, Ingrid E ; Petrou, Steven ; Santoro, Bina ; Reid, Christopher A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-adbf567a19a70c39c2effcb5ed939b4097d1011d3900d5641d2322cc29d406cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Brain Diseases - genetics</topic><topic>Brain Diseases - metabolism</topic><topic>Disease Models, Animal</topic><topic>Epilepsy - genetics</topic><topic>Epilepsy - metabolism</topic><topic>Female</topic><topic>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics</topic><topic>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mutation</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Original</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - metabolism</topic><topic>Pyramidal Cells - metabolism</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bleakley, Lauren E</creatorcontrib><creatorcontrib>McKenzie, Chaseley E</creatorcontrib><creatorcontrib>Soh, Ming S</creatorcontrib><creatorcontrib>Forster, Ian C</creatorcontrib><creatorcontrib>Pinares-Garcia, Paulo</creatorcontrib><creatorcontrib>Sedo, Alicia</creatorcontrib><creatorcontrib>Kathirvel, Anirudh</creatorcontrib><creatorcontrib>Churilov, Leonid</creatorcontrib><creatorcontrib>Jancovski, Nikola</creatorcontrib><creatorcontrib>Maljevic, Snezana</creatorcontrib><creatorcontrib>Berkovic, Samuel F</creatorcontrib><creatorcontrib>Scheffer, Ingrid E</creatorcontrib><creatorcontrib>Petrou, Steven</creatorcontrib><creatorcontrib>Santoro, Bina</creatorcontrib><creatorcontrib>Reid, Christopher A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain (London, England : 1878)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bleakley, Lauren E</au><au>McKenzie, Chaseley E</au><au>Soh, Ming S</au><au>Forster, Ian C</au><au>Pinares-Garcia, Paulo</au><au>Sedo, Alicia</au><au>Kathirvel, Anirudh</au><au>Churilov, Leonid</au><au>Jancovski, Nikola</au><au>Maljevic, Snezana</au><au>Berkovic, Samuel F</au><au>Scheffer, Ingrid E</au><au>Petrou, Steven</au><au>Santoro, Bina</au><au>Reid, Christopher A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy</atitle><jtitle>Brain (London, England : 1878)</jtitle><addtitle>Brain</addtitle><date>2021-08-17</date><risdate>2021</risdate><volume>144</volume><issue>7</issue><spage>2060</spage><epage>2073</epage><pages>2060-2073</pages><issn>0006-8950</issn><eissn>1460-2156</eissn><abstract>Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33822003</pmid><doi>10.1093/brain/awab145</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6918-2346</orcidid><orcidid>https://orcid.org/0000-0002-5689-2082</orcidid><orcidid>https://orcid.org/0000-0002-2143-3265</orcidid><orcidid>https://orcid.org/0000-0001-5611-6860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8950 |
ispartof | Brain (London, England : 1878), 2021-08, Vol.144 (7), p.2060-2073 |
issn | 0006-8950 1460-2156 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8370418 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Animals Brain Diseases - genetics Brain Diseases - metabolism Disease Models, Animal Epilepsy - genetics Epilepsy - metabolism Female Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - genetics Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism Male Mice Mice, Mutant Strains Mutation Neurons - metabolism Neurons - pathology Original Potassium Channels - genetics Potassium Channels - metabolism Pyramidal Cells - metabolism Xenopus laevis |
title | Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A51%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%20leak%20underlies%20neuronal%20excitability%20in%20an%20HCN1%20developmental%20and%20epileptic%20encephalopathy&rft.jtitle=Brain%20(London,%20England%20:%201878)&rft.au=Bleakley,%20Lauren%20E&rft.date=2021-08-17&rft.volume=144&rft.issue=7&rft.spage=2060&rft.epage=2073&rft.pages=2060-2073&rft.issn=0006-8950&rft.eissn=1460-2156&rft_id=info:doi/10.1093/brain/awab145&rft_dat=%3Cproquest_pubme%3E2509266421%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509266421&rft_id=info:pmid/33822003&rfr_iscdi=true |