Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury

Keap1-Nrf2-ARE and heat shock proteins (Hsps) are important endogenous protection mechanisms initiated by heat stress to play a double protective role for cell adaptation and survival. H9C2 cells and 80 300-day-old specific pathogen-free chickens were randomly divided into the control and tea polyph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2021, Vol.2021 (1), p.9615429-9615429
Hauptverfasser: Yin, Bin, Lian, Ruirui, Li, Zhen, Liu, Yueyue, Yang, Shifa, Huang, Zhongli, Zhao, Zengcheng, Li, Ying, Sun, Chuanxi, Lin, Shuqian, Wan, Renzhong, Li, Guiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9615429
container_issue 1
container_start_page 9615429
container_title Oxidative medicine and cellular longevity
container_volume 2021
creator Yin, Bin
Lian, Ruirui
Li, Zhen
Liu, Yueyue
Yang, Shifa
Huang, Zhongli
Zhao, Zengcheng
Li, Ying
Sun, Chuanxi
Lin, Shuqian
Wan, Renzhong
Li, Guiming
description Keap1-Nrf2-ARE and heat shock proteins (Hsps) are important endogenous protection mechanisms initiated by heat stress to play a double protective role for cell adaptation and survival. H9C2 cells and 80 300-day-old specific pathogen-free chickens were randomly divided into the control and tea polyphenol groups and used to establish a heat stress model in vitro and in vivo. This task was conducted to explore the protection and mechanism of tea polyphenols in relieving thermal injury. A supplement with 10 μg/mL tea polyphenols could effectively relieve the heat damage of H9C2 cells at 42°C. Accordingly, weaker granular degeneration, vacuolar degeneration, and nucleus deep staining were shown. A strong antioxidant capacity was manifested in the upregulation of the total antioxidant capacity (T-AOC) (at 5 h, P
doi_str_mv 10.1155/2021/9615429
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8369192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563427458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-adfd7f8842fd201dbd5e662604734ac4510dc679989bff0ec051125b05d484a93</originalsourceid><addsrcrecordid>eNp90c9rFDEUB_BQlP6yN88S8CLUtUkmyU4uQlnabqGgaD2n2eSNk2U2GZNM7f73nXXXRT14eoH34UseX4ReU_KBUiEuGGH0QkkqOFMH6JgqziZEKf5i_ybkCJ3kvCREVozTQ3RUcU4rxdQxergHgz_Hbt23EGKX8VVoTbDgcGkBX4bi45N3JhQ8M72xvqyxCQ7fBjds0Dz3GZeIv0Dn4RHwHEzBX0uCnEezHNL6FXrZmC7D2W6eom_XV_ez-eTu083t7PJuYjmvy8S4xk2buuascYxQt3ACpGSS8GnFjeWCEmflVKlaLZqGgCWCUiYWRDhec6OqU_Rxm9sPixU4C6Ek0-k--ZVJax2N139vgm_19_io60oqqtgY8G4XkOKPAXLRK58tdJ0JEIesmZAVZ1Mu6pG-_Ycu45DCeN4vVUlSy03g-62yKeacoNl_hhK9qU5vqtO76kb-5s8D9vh3VyM434LWB2d--v_HPQPql6Cv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563360862</pqid></control><display><type>article</type><title>Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yin, Bin ; Lian, Ruirui ; Li, Zhen ; Liu, Yueyue ; Yang, Shifa ; Huang, Zhongli ; Zhao, Zengcheng ; Li, Ying ; Sun, Chuanxi ; Lin, Shuqian ; Wan, Renzhong ; Li, Guiming</creator><contributor>Braidy, Nady ; Nady Braidy</contributor><creatorcontrib>Yin, Bin ; Lian, Ruirui ; Li, Zhen ; Liu, Yueyue ; Yang, Shifa ; Huang, Zhongli ; Zhao, Zengcheng ; Li, Ying ; Sun, Chuanxi ; Lin, Shuqian ; Wan, Renzhong ; Li, Guiming ; Braidy, Nady ; Nady Braidy</creatorcontrib><description><![CDATA[Keap1-Nrf2-ARE and heat shock proteins (Hsps) are important endogenous protection mechanisms initiated by heat stress to play a double protective role for cell adaptation and survival. H9C2 cells and 80 300-day-old specific pathogen-free chickens were randomly divided into the control and tea polyphenol groups and used to establish a heat stress model in vitro and in vivo. This task was conducted to explore the protection and mechanism of tea polyphenols in relieving thermal injury. A supplement with 10 μg/mL tea polyphenols could effectively relieve the heat damage of H9C2 cells at 42°C. Accordingly, weaker granular degeneration, vacuolar degeneration, and nucleus deep staining were shown. A strong antioxidant capacity was manifested in the upregulation of the total antioxidant capacity (T-AOC) (at 5 h, P<0.05), Hemeoxygenase-1 mRNA (at 2 h, P<0.01), superoxide dismutase (SOD) (at 2, 3, and 5 h, P<0.05), and Nrf2 (at 0 and 5 h, P<0.01). A high expression of Hsps was reflected in CRYAB at 3 h; Hsp27 at 0, 2, and 3 h (P<0.01); and Hsp70 at 3 and 5 h (P<0.01). The supplement with 0.2 g/L tea polyphenols in the drinking water also had a good effect in alleviating the heat stress damage of the myocardial cells of hens at 38°C. Accordingly, light pathological lesions and downregulation of the myocardial injury-related indicators (LDH, CK, CK-MB, and TNF-α) were shown. The mechanism was related to the upregulation of T-AOC (at 0 h, P<0.05), GSH-PX (at 0.5 d, P<0.01), SOD (at 0.5 d), and Nrf2 (at 0 d with P<0.01 and 2 d with P<0.05) and the induced expression of CRYAB (at 0.5 and 2 d), Hsp27 (at 0, 0.5, and 5 d), and Hsp70 (at 0 and 0.5 d). In conclusion, the tea polyphenols enhanced the antioxidant capacity and induced Hsps to relieve heat stress injury.]]></description><identifier>ISSN: 1942-0900</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2021/9615429</identifier><identifier>PMID: 34413929</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Animals ; Antioxidants ; Antioxidants - pharmacology ; Body temperature ; Cardiomyocytes ; Cell cycle ; Enzymes ; Heat resistance ; Heat shock proteins ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Heat-Shock Response ; Homeostasis ; Mice ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; NF-E2-Related Factor 2 - genetics ; NF-E2-Related Factor 2 - metabolism ; Oxidative Stress ; Polyphenols ; Polyphenols - pharmacology ; Tea - chemistry</subject><ispartof>Oxidative medicine and cellular longevity, 2021, Vol.2021 (1), p.9615429-9615429</ispartof><rights>Copyright © 2021 Bin Yin et al.</rights><rights>Copyright © 2021 Bin Yin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2021 Bin Yin et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-adfd7f8842fd201dbd5e662604734ac4510dc679989bff0ec051125b05d484a93</citedby><cites>FETCH-LOGICAL-c448t-adfd7f8842fd201dbd5e662604734ac4510dc679989bff0ec051125b05d484a93</cites><orcidid>0000-0001-5899-9054 ; 0000-0001-7134-022X ; 0000-0003-4755-0715 ; 0000-0002-4572-7735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34413929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Braidy, Nady</contributor><contributor>Nady Braidy</contributor><creatorcontrib>Yin, Bin</creatorcontrib><creatorcontrib>Lian, Ruirui</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Liu, Yueyue</creatorcontrib><creatorcontrib>Yang, Shifa</creatorcontrib><creatorcontrib>Huang, Zhongli</creatorcontrib><creatorcontrib>Zhao, Zengcheng</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sun, Chuanxi</creatorcontrib><creatorcontrib>Lin, Shuqian</creatorcontrib><creatorcontrib>Wan, Renzhong</creatorcontrib><creatorcontrib>Li, Guiming</creatorcontrib><title>Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description><![CDATA[Keap1-Nrf2-ARE and heat shock proteins (Hsps) are important endogenous protection mechanisms initiated by heat stress to play a double protective role for cell adaptation and survival. H9C2 cells and 80 300-day-old specific pathogen-free chickens were randomly divided into the control and tea polyphenol groups and used to establish a heat stress model in vitro and in vivo. This task was conducted to explore the protection and mechanism of tea polyphenols in relieving thermal injury. A supplement with 10 μg/mL tea polyphenols could effectively relieve the heat damage of H9C2 cells at 42°C. Accordingly, weaker granular degeneration, vacuolar degeneration, and nucleus deep staining were shown. A strong antioxidant capacity was manifested in the upregulation of the total antioxidant capacity (T-AOC) (at 5 h, P<0.05), Hemeoxygenase-1 mRNA (at 2 h, P<0.01), superoxide dismutase (SOD) (at 2, 3, and 5 h, P<0.05), and Nrf2 (at 0 and 5 h, P<0.01). A high expression of Hsps was reflected in CRYAB at 3 h; Hsp27 at 0, 2, and 3 h (P<0.01); and Hsp70 at 3 and 5 h (P<0.01). The supplement with 0.2 g/L tea polyphenols in the drinking water also had a good effect in alleviating the heat stress damage of the myocardial cells of hens at 38°C. Accordingly, light pathological lesions and downregulation of the myocardial injury-related indicators (LDH, CK, CK-MB, and TNF-α) were shown. The mechanism was related to the upregulation of T-AOC (at 0 h, P<0.05), GSH-PX (at 0.5 d, P<0.01), SOD (at 0.5 d), and Nrf2 (at 0 d with P<0.01 and 2 d with P<0.05) and the induced expression of CRYAB (at 0.5 and 2 d), Hsp27 (at 0, 0.5, and 5 d), and Hsp70 (at 0 and 0.5 d). In conclusion, the tea polyphenols enhanced the antioxidant capacity and induced Hsps to relieve heat stress injury.]]></description><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Body temperature</subject><subject>Cardiomyocytes</subject><subject>Cell cycle</subject><subject>Enzymes</subject><subject>Heat resistance</subject><subject>Heat shock proteins</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Heat-Shock Response</subject><subject>Homeostasis</subject><subject>Mice</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>NF-E2-Related Factor 2 - genetics</subject><subject>NF-E2-Related Factor 2 - metabolism</subject><subject>Oxidative Stress</subject><subject>Polyphenols</subject><subject>Polyphenols - pharmacology</subject><subject>Tea - chemistry</subject><issn>1942-0900</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90c9rFDEUB_BQlP6yN88S8CLUtUkmyU4uQlnabqGgaD2n2eSNk2U2GZNM7f73nXXXRT14eoH34UseX4ReU_KBUiEuGGH0QkkqOFMH6JgqziZEKf5i_ybkCJ3kvCREVozTQ3RUcU4rxdQxergHgz_Hbt23EGKX8VVoTbDgcGkBX4bi45N3JhQ8M72xvqyxCQ7fBjds0Dz3GZeIv0Dn4RHwHEzBX0uCnEezHNL6FXrZmC7D2W6eom_XV_ez-eTu083t7PJuYjmvy8S4xk2buuascYxQt3ACpGSS8GnFjeWCEmflVKlaLZqGgCWCUiYWRDhec6OqU_Rxm9sPixU4C6Ek0-k--ZVJax2N139vgm_19_io60oqqtgY8G4XkOKPAXLRK58tdJ0JEIesmZAVZ1Mu6pG-_Ycu45DCeN4vVUlSy03g-62yKeacoNl_hhK9qU5vqtO76kb-5s8D9vh3VyM434LWB2d--v_HPQPql6Cv</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yin, Bin</creator><creator>Lian, Ruirui</creator><creator>Li, Zhen</creator><creator>Liu, Yueyue</creator><creator>Yang, Shifa</creator><creator>Huang, Zhongli</creator><creator>Zhao, Zengcheng</creator><creator>Li, Ying</creator><creator>Sun, Chuanxi</creator><creator>Lin, Shuqian</creator><creator>Wan, Renzhong</creator><creator>Li, Guiming</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5899-9054</orcidid><orcidid>https://orcid.org/0000-0001-7134-022X</orcidid><orcidid>https://orcid.org/0000-0003-4755-0715</orcidid><orcidid>https://orcid.org/0000-0002-4572-7735</orcidid></search><sort><creationdate>2021</creationdate><title>Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury</title><author>Yin, Bin ; Lian, Ruirui ; Li, Zhen ; Liu, Yueyue ; Yang, Shifa ; Huang, Zhongli ; Zhao, Zengcheng ; Li, Ying ; Sun, Chuanxi ; Lin, Shuqian ; Wan, Renzhong ; Li, Guiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-adfd7f8842fd201dbd5e662604734ac4510dc679989bff0ec051125b05d484a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Body temperature</topic><topic>Cardiomyocytes</topic><topic>Cell cycle</topic><topic>Enzymes</topic><topic>Heat resistance</topic><topic>Heat shock proteins</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Heat-Shock Response</topic><topic>Homeostasis</topic><topic>Mice</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>NF-E2-Related Factor 2 - genetics</topic><topic>NF-E2-Related Factor 2 - metabolism</topic><topic>Oxidative Stress</topic><topic>Polyphenols</topic><topic>Polyphenols - pharmacology</topic><topic>Tea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Bin</creatorcontrib><creatorcontrib>Lian, Ruirui</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Liu, Yueyue</creatorcontrib><creatorcontrib>Yang, Shifa</creatorcontrib><creatorcontrib>Huang, Zhongli</creatorcontrib><creatorcontrib>Zhao, Zengcheng</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Sun, Chuanxi</creatorcontrib><creatorcontrib>Lin, Shuqian</creatorcontrib><creatorcontrib>Wan, Renzhong</creatorcontrib><creatorcontrib>Li, Guiming</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Bin</au><au>Lian, Ruirui</au><au>Li, Zhen</au><au>Liu, Yueyue</au><au>Yang, Shifa</au><au>Huang, Zhongli</au><au>Zhao, Zengcheng</au><au>Li, Ying</au><au>Sun, Chuanxi</au><au>Lin, Shuqian</au><au>Wan, Renzhong</au><au>Li, Guiming</au><au>Braidy, Nady</au><au>Nady Braidy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>9615429</spage><epage>9615429</epage><pages>9615429-9615429</pages><issn>1942-0900</issn><eissn>1942-0994</eissn><abstract><![CDATA[Keap1-Nrf2-ARE and heat shock proteins (Hsps) are important endogenous protection mechanisms initiated by heat stress to play a double protective role for cell adaptation and survival. H9C2 cells and 80 300-day-old specific pathogen-free chickens were randomly divided into the control and tea polyphenol groups and used to establish a heat stress model in vitro and in vivo. This task was conducted to explore the protection and mechanism of tea polyphenols in relieving thermal injury. A supplement with 10 μg/mL tea polyphenols could effectively relieve the heat damage of H9C2 cells at 42°C. Accordingly, weaker granular degeneration, vacuolar degeneration, and nucleus deep staining were shown. A strong antioxidant capacity was manifested in the upregulation of the total antioxidant capacity (T-AOC) (at 5 h, P<0.05), Hemeoxygenase-1 mRNA (at 2 h, P<0.01), superoxide dismutase (SOD) (at 2, 3, and 5 h, P<0.05), and Nrf2 (at 0 and 5 h, P<0.01). A high expression of Hsps was reflected in CRYAB at 3 h; Hsp27 at 0, 2, and 3 h (P<0.01); and Hsp70 at 3 and 5 h (P<0.01). The supplement with 0.2 g/L tea polyphenols in the drinking water also had a good effect in alleviating the heat stress damage of the myocardial cells of hens at 38°C. Accordingly, light pathological lesions and downregulation of the myocardial injury-related indicators (LDH, CK, CK-MB, and TNF-α) were shown. The mechanism was related to the upregulation of T-AOC (at 0 h, P<0.05), GSH-PX (at 0.5 d, P<0.01), SOD (at 0.5 d), and Nrf2 (at 0 d with P<0.01 and 2 d with P<0.05) and the induced expression of CRYAB (at 0.5 and 2 d), Hsp27 (at 0, 0.5, and 5 d), and Hsp70 (at 0 and 0.5 d). In conclusion, the tea polyphenols enhanced the antioxidant capacity and induced Hsps to relieve heat stress injury.]]></abstract><cop>United States</cop><pub>Hindawi</pub><pmid>34413929</pmid><doi>10.1155/2021/9615429</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5899-9054</orcidid><orcidid>https://orcid.org/0000-0001-7134-022X</orcidid><orcidid>https://orcid.org/0000-0003-4755-0715</orcidid><orcidid>https://orcid.org/0000-0002-4572-7735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0900
ispartof Oxidative medicine and cellular longevity, 2021, Vol.2021 (1), p.9615429-9615429
issn 1942-0900
1942-0994
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8369192
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Animals
Antioxidants
Antioxidants - pharmacology
Body temperature
Cardiomyocytes
Cell cycle
Enzymes
Heat resistance
Heat shock proteins
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Heat-Shock Response
Homeostasis
Mice
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - pathology
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Oxidative Stress
Polyphenols
Polyphenols - pharmacology
Tea - chemistry
title Tea Polyphenols Enhanced the Antioxidant Capacity and Induced Hsps to Relieve Heat Stress Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A38%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tea%20Polyphenols%20Enhanced%20the%20Antioxidant%20Capacity%20and%20Induced%20Hsps%20to%20Relieve%20Heat%20Stress%20Injury&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Yin,%20Bin&rft.date=2021&rft.volume=2021&rft.issue=1&rft.spage=9615429&rft.epage=9615429&rft.pages=9615429-9615429&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2021/9615429&rft_dat=%3Cproquest_pubme%3E2563427458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563360862&rft_id=info:pmid/34413929&rfr_iscdi=true