Hotspots of Human Mutation

Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in genetics 2021-08, Vol.37 (8), p.717-729
Hauptverfasser: Nesta, Alex V., Tafur, Denisse, Beck, Christine R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 729
container_issue 8
container_start_page 717
container_title Trends in genetics
container_volume 37
creator Nesta, Alex V.
Tafur, Denisse
Beck, Christine R.
description Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered. Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes.
doi_str_mv 10.1016/j.tig.2020.10.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952520302766</els_id><sourcerecordid>2461392663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx3NQ3Jz-AXqQHb205kebJQiCDHXCxIueQ5u-zoy2mUk68L83ZXPoxUN45L3P-yZ8ELogOCWY8Jt1GswqpZgO9xRjdoTGsS8SmdN8hE69X2OM8xnLT9CIMSIlzsQYXS5s8Jt4praeLvq26KYvfSiCsd0ZOq6LxsP5vk7Q--PD23yRLF-fnuf3y0RnOQmJ0BQLKqqZ4HQGshASaqAl1iITdZlRqBkDyTBhwLSMKHCmc0Z0VWVClppN0N0ud9OXLVQauuCKRm2caQv3pWxh1N9JZz7Uym6VYJznPI8B1_sAZz978EG1xmtomqID23tFM06YpJyziJIdqp313kF9eIZgNXhUaxU9qsHj0Ioe487V7_8dNn4kRuB2B0C0tDXglNcGOg2VcaCDqqz5J_4bDh6Eew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461392663</pqid></control><display><type>article</type><title>Hotspots of Human Mutation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nesta, Alex V. ; Tafur, Denisse ; Beck, Christine R.</creator><creatorcontrib>Nesta, Alex V. ; Tafur, Denisse ; Beck, Christine R.</creatorcontrib><description>Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered. Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/j.tig.2020.10.003</identifier><identifier>PMID: 33199048</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>DNA repair ; DNA Replication - genetics ; Genome, Human - genetics ; Genomic Structural Variation - genetics ; Genomics ; Humans ; indel ; Mutation - genetics ; mutation hotspots ; Polymorphism, Single Nucleotide - genetics ; Recombination, Genetic - genetics ; recurrent mutation ; selection ; structural variation</subject><ispartof>Trends in genetics, 2021-08, Vol.37 (8), p.717-729</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</citedby><cites>FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168952520302766$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33199048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesta, Alex V.</creatorcontrib><creatorcontrib>Tafur, Denisse</creatorcontrib><creatorcontrib>Beck, Christine R.</creatorcontrib><title>Hotspots of Human Mutation</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered. Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes.</description><subject>DNA repair</subject><subject>DNA Replication - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genomic Structural Variation - genetics</subject><subject>Genomics</subject><subject>Humans</subject><subject>indel</subject><subject>Mutation - genetics</subject><subject>mutation hotspots</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Recombination, Genetic - genetics</subject><subject>recurrent mutation</subject><subject>selection</subject><subject>structural variation</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAUx3NQ3Jz-AXqQHb205kebJQiCDHXCxIueQ5u-zoy2mUk68L83ZXPoxUN45L3P-yZ8ELogOCWY8Jt1GswqpZgO9xRjdoTGsS8SmdN8hE69X2OM8xnLT9CIMSIlzsQYXS5s8Jt4praeLvq26KYvfSiCsd0ZOq6LxsP5vk7Q--PD23yRLF-fnuf3y0RnOQmJ0BQLKqqZ4HQGshASaqAl1iITdZlRqBkDyTBhwLSMKHCmc0Z0VWVClppN0N0ud9OXLVQauuCKRm2caQv3pWxh1N9JZz7Uym6VYJznPI8B1_sAZz978EG1xmtomqID23tFM06YpJyziJIdqp313kF9eIZgNXhUaxU9qsHj0Ioe487V7_8dNn4kRuB2B0C0tDXglNcGOg2VcaCDqqz5J_4bDh6Eew</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nesta, Alex V.</creator><creator>Tafur, Denisse</creator><creator>Beck, Christine R.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210801</creationdate><title>Hotspots of Human Mutation</title><author>Nesta, Alex V. ; Tafur, Denisse ; Beck, Christine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DNA repair</topic><topic>DNA Replication - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genomic Structural Variation - genetics</topic><topic>Genomics</topic><topic>Humans</topic><topic>indel</topic><topic>Mutation - genetics</topic><topic>mutation hotspots</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Recombination, Genetic - genetics</topic><topic>recurrent mutation</topic><topic>selection</topic><topic>structural variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesta, Alex V.</creatorcontrib><creatorcontrib>Tafur, Denisse</creatorcontrib><creatorcontrib>Beck, Christine R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesta, Alex V.</au><au>Tafur, Denisse</au><au>Beck, Christine R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hotspots of Human Mutation</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>37</volume><issue>8</issue><spage>717</spage><epage>729</epage><pages>717-729</pages><issn>0168-9525</issn><abstract>Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered. Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33199048</pmid><doi>10.1016/j.tig.2020.10.003</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9525
ispartof Trends in genetics, 2021-08, Vol.37 (8), p.717-729
issn 0168-9525
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366565
source MEDLINE; Elsevier ScienceDirect Journals
subjects DNA repair
DNA Replication - genetics
Genome, Human - genetics
Genomic Structural Variation - genetics
Genomics
Humans
indel
Mutation - genetics
mutation hotspots
Polymorphism, Single Nucleotide - genetics
Recombination, Genetic - genetics
recurrent mutation
selection
structural variation
title Hotspots of Human Mutation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hotspots%20of%20Human%20Mutation&rft.jtitle=Trends%20in%20genetics&rft.au=Nesta,%20Alex%20V.&rft.date=2021-08-01&rft.volume=37&rft.issue=8&rft.spage=717&rft.epage=729&rft.pages=717-729&rft.issn=0168-9525&rft_id=info:doi/10.1016/j.tig.2020.10.003&rft_dat=%3Cproquest_pubme%3E2461392663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461392663&rft_id=info:pmid/33199048&rft_els_id=S0168952520302766&rfr_iscdi=true