Hotspots of Human Mutation
Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA re...
Gespeichert in:
Veröffentlicht in: | Trends in genetics 2021-08, Vol.37 (8), p.717-729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 729 |
---|---|
container_issue | 8 |
container_start_page | 717 |
container_title | Trends in genetics |
container_volume | 37 |
creator | Nesta, Alex V. Tafur, Denisse Beck, Christine R. |
description | Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered.
Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes. |
doi_str_mv | 10.1016/j.tig.2020.10.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952520302766</els_id><sourcerecordid>2461392663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx3NQ3Jz-AXqQHb205kebJQiCDHXCxIueQ5u-zoy2mUk68L83ZXPoxUN45L3P-yZ8ELogOCWY8Jt1GswqpZgO9xRjdoTGsS8SmdN8hE69X2OM8xnLT9CIMSIlzsQYXS5s8Jt4praeLvq26KYvfSiCsd0ZOq6LxsP5vk7Q--PD23yRLF-fnuf3y0RnOQmJ0BQLKqqZ4HQGshASaqAl1iITdZlRqBkDyTBhwLSMKHCmc0Z0VWVClppN0N0ud9OXLVQauuCKRm2caQv3pWxh1N9JZz7Uym6VYJznPI8B1_sAZz978EG1xmtomqID23tFM06YpJyziJIdqp313kF9eIZgNXhUaxU9qsHj0Ioe487V7_8dNn4kRuB2B0C0tDXglNcGOg2VcaCDqqz5J_4bDh6Eew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461392663</pqid></control><display><type>article</type><title>Hotspots of Human Mutation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nesta, Alex V. ; Tafur, Denisse ; Beck, Christine R.</creator><creatorcontrib>Nesta, Alex V. ; Tafur, Denisse ; Beck, Christine R.</creatorcontrib><description>Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered.
Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/j.tig.2020.10.003</identifier><identifier>PMID: 33199048</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>DNA repair ; DNA Replication - genetics ; Genome, Human - genetics ; Genomic Structural Variation - genetics ; Genomics ; Humans ; indel ; Mutation - genetics ; mutation hotspots ; Polymorphism, Single Nucleotide - genetics ; Recombination, Genetic - genetics ; recurrent mutation ; selection ; structural variation</subject><ispartof>Trends in genetics, 2021-08, Vol.37 (8), p.717-729</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</citedby><cites>FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168952520302766$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33199048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesta, Alex V.</creatorcontrib><creatorcontrib>Tafur, Denisse</creatorcontrib><creatorcontrib>Beck, Christine R.</creatorcontrib><title>Hotspots of Human Mutation</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered.
Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes.</description><subject>DNA repair</subject><subject>DNA Replication - genetics</subject><subject>Genome, Human - genetics</subject><subject>Genomic Structural Variation - genetics</subject><subject>Genomics</subject><subject>Humans</subject><subject>indel</subject><subject>Mutation - genetics</subject><subject>mutation hotspots</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Recombination, Genetic - genetics</subject><subject>recurrent mutation</subject><subject>selection</subject><subject>structural variation</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAUx3NQ3Jz-AXqQHb205kebJQiCDHXCxIueQ5u-zoy2mUk68L83ZXPoxUN45L3P-yZ8ELogOCWY8Jt1GswqpZgO9xRjdoTGsS8SmdN8hE69X2OM8xnLT9CIMSIlzsQYXS5s8Jt4praeLvq26KYvfSiCsd0ZOq6LxsP5vk7Q--PD23yRLF-fnuf3y0RnOQmJ0BQLKqqZ4HQGshASaqAl1iITdZlRqBkDyTBhwLSMKHCmc0Z0VWVClppN0N0ud9OXLVQauuCKRm2caQv3pWxh1N9JZz7Uym6VYJznPI8B1_sAZz978EG1xmtomqID23tFM06YpJyziJIdqp313kF9eIZgNXhUaxU9qsHj0Ioe487V7_8dNn4kRuB2B0C0tDXglNcGOg2VcaCDqqz5J_4bDh6Eew</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Nesta, Alex V.</creator><creator>Tafur, Denisse</creator><creator>Beck, Christine R.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210801</creationdate><title>Hotspots of Human Mutation</title><author>Nesta, Alex V. ; Tafur, Denisse ; Beck, Christine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8c20828d78627e9a89efe2b0c848fb42ef33e93013e3c9082e63c531cdd489bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DNA repair</topic><topic>DNA Replication - genetics</topic><topic>Genome, Human - genetics</topic><topic>Genomic Structural Variation - genetics</topic><topic>Genomics</topic><topic>Humans</topic><topic>indel</topic><topic>Mutation - genetics</topic><topic>mutation hotspots</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Recombination, Genetic - genetics</topic><topic>recurrent mutation</topic><topic>selection</topic><topic>structural variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesta, Alex V.</creatorcontrib><creatorcontrib>Tafur, Denisse</creatorcontrib><creatorcontrib>Beck, Christine R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesta, Alex V.</au><au>Tafur, Denisse</au><au>Beck, Christine R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hotspots of Human Mutation</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>37</volume><issue>8</issue><spage>717</spage><epage>729</epage><pages>717-729</pages><issn>0168-9525</issn><abstract>Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered.
Genetic mutations are influenced by sequence context, structure, and genomic features.Mechanisms responsible for many mutational hotspots have been identified.Hotspots are largely related to loci prone to mutation during replication or DNA repair.Selection leads to recurrent mutations in somatic tissues that can be exploited for therapeutic purposes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33199048</pmid><doi>10.1016/j.tig.2020.10.003</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9525 |
ispartof | Trends in genetics, 2021-08, Vol.37 (8), p.717-729 |
issn | 0168-9525 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366565 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | DNA repair DNA Replication - genetics Genome, Human - genetics Genomic Structural Variation - genetics Genomics Humans indel Mutation - genetics mutation hotspots Polymorphism, Single Nucleotide - genetics Recombination, Genetic - genetics recurrent mutation selection structural variation |
title | Hotspots of Human Mutation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hotspots%20of%20Human%20Mutation&rft.jtitle=Trends%20in%20genetics&rft.au=Nesta,%20Alex%20V.&rft.date=2021-08-01&rft.volume=37&rft.issue=8&rft.spage=717&rft.epage=729&rft.pages=717-729&rft.issn=0168-9525&rft_id=info:doi/10.1016/j.tig.2020.10.003&rft_dat=%3Cproquest_pubme%3E2461392663%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461392663&rft_id=info:pmid/33199048&rft_els_id=S0168952520302766&rfr_iscdi=true |