Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors

Introduction: Real-time, non-invasive monitoring of thrombus formation in extracorporeal circuits has yet to be achieved. To address the challenges of conventional optical thrombus detection methods requiring large devices that limit detection capacity, we developed a micro-optical thrombus sensor....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of artificial organs 2021-08, Vol.44 (8), p.565-573
Hauptverfasser: Morita, Nobutomo, Sakota, Daisuke, Oota-Ishigaki, Akiko, Kosaka, Ryo, Maruyama, Osamu, Nishida, Masahiro, Kondo, Kazuki, Takeshita, Toshihiro, Iwasaki, Wataru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573
container_issue 8
container_start_page 565
container_title International journal of artificial organs
container_volume 44
creator Morita, Nobutomo
Sakota, Daisuke
Oota-Ishigaki, Akiko
Kosaka, Ryo
Maruyama, Osamu
Nishida, Masahiro
Kondo, Kazuki
Takeshita, Toshihiro
Iwasaki, Wataru
description Introduction: Real-time, non-invasive monitoring of thrombus formation in extracorporeal circuits has yet to be achieved. To address the challenges of conventional optical thrombus detection methods requiring large devices that limit detection capacity, we developed a micro-optical thrombus sensor. Methods: The proposed micro-optical thrombus sensor can detect the intensity of light scattered by blood at wavelengths of 660 and 855 nm. Two thrombus sensors were installed on in vitro circuit: one at the rotary blood pump and one at a flow channel. To evaluate the variation in the ratio of incident light intensity at each wavelength of the two sensors, Rfluct (for 660 nm) and Ifluct (for 855 nm) were defined. Using fresh porcine blood as a working fluid, we performed in vitro tests of haematocrit (Hct) and oxygen saturation (SaO2) variation and thrombus detection. Thrombus tests were terminated after Rfluct or Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. Results: In all three thrombus detection tests, Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. After the tests, thrombus formation was confirmed in the pump, and there was no thrombus in the flow channel. The results indicate that Ifluct is an effective parameter for identifying the presence of a thrombus. Conclusion: Thrombus detection in an extracorporeal circuit using the developed micro-optical sensors was successfully demonstrated in an in vitro test.
doi_str_mv 10.1177/0391398820978656
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0391398820978656</sage_id><sourcerecordid>2562925124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-2f594a50dc8772bc85c5773879cd674686fa3a8d9460b804163358d6217363153</originalsourceid><addsrcrecordid>eNp1kc1rVDEUxYModlrddyUBNy6MzffHplCKX1AQpK5DJi8zTXkvmSZ5Q_vfm2HqWAuusji_c3LvPQCcEvyJEKXOMDOEGa0pNkpLIV-ABVGUI4k5fgkWOxnt9CNwXOstxkRyLl6DI8YY7qJZgPFncCNqcQofYcoJxbR1NW4DbDclT8u5wiG04FvMCcYEXYLhvhXnc9nk0q3Qx-Ln2OBcY1rDKfqSUd606Lt2yKgh1VzqG_Bq5cYa3j6-J-DXl8_Xl9_Q1Y-v3y8vrpAXVDdEV8JwJ_DgtVJ06bXwQimmlfGDVFxquXLM6cFwiZcacyIZE3qQlCgmGRHsBJzvczfzcgqDD6mPPNpNiZMrDza7aP9VUryx67y1mklJ1C7gw2NAyXdzqM1Osfowji6FPFdLuTRYG0ZlR98_Q2_zXFJfz1IhqaGCUN4pvKf6eWotYXUYhmC7q9I-r7Jb3j1d4mD4010H0B6obh3-_vrfwN_p6acr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562925124</pqid></control><display><type>article</type><title>Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors</title><source>Access via SAGE</source><creator>Morita, Nobutomo ; Sakota, Daisuke ; Oota-Ishigaki, Akiko ; Kosaka, Ryo ; Maruyama, Osamu ; Nishida, Masahiro ; Kondo, Kazuki ; Takeshita, Toshihiro ; Iwasaki, Wataru</creator><creatorcontrib>Morita, Nobutomo ; Sakota, Daisuke ; Oota-Ishigaki, Akiko ; Kosaka, Ryo ; Maruyama, Osamu ; Nishida, Masahiro ; Kondo, Kazuki ; Takeshita, Toshihiro ; Iwasaki, Wataru</creatorcontrib><description>Introduction: Real-time, non-invasive monitoring of thrombus formation in extracorporeal circuits has yet to be achieved. To address the challenges of conventional optical thrombus detection methods requiring large devices that limit detection capacity, we developed a micro-optical thrombus sensor. Methods: The proposed micro-optical thrombus sensor can detect the intensity of light scattered by blood at wavelengths of 660 and 855 nm. Two thrombus sensors were installed on in vitro circuit: one at the rotary blood pump and one at a flow channel. To evaluate the variation in the ratio of incident light intensity at each wavelength of the two sensors, Rfluct (for 660 nm) and Ifluct (for 855 nm) were defined. Using fresh porcine blood as a working fluid, we performed in vitro tests of haematocrit (Hct) and oxygen saturation (SaO2) variation and thrombus detection. Thrombus tests were terminated after Rfluct or Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. Results: In all three thrombus detection tests, Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. After the tests, thrombus formation was confirmed in the pump, and there was no thrombus in the flow channel. The results indicate that Ifluct is an effective parameter for identifying the presence of a thrombus. Conclusion: Thrombus detection in an extracorporeal circuit using the developed micro-optical sensors was successfully demonstrated in an in vitro test.</description><identifier>ISSN: 0391-3988</identifier><identifier>EISSN: 1724-6040</identifier><identifier>DOI: 10.1177/0391398820978656</identifier><identifier>PMID: 33300399</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Blood ; Blood clots ; Blood pumps ; Circuits ; Hematocrit ; In vitro methods and tests ; Incident light ; Light intensity ; Luminous intensity ; Optical measuring instruments ; Original s ; Oxygen content ; Parameter identification ; Real time ; Sensors ; Thrombosis ; Variation ; Wavelengths ; Working fluids</subject><ispartof>International journal of artificial organs, 2021-08, Vol.44 (8), p.565-573</ispartof><rights>The Author(s) 2020</rights><rights>Copyright Wichtig Editore s.r.l. Aug 2021</rights><rights>The Author(s) 2020 2020 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-2f594a50dc8772bc85c5773879cd674686fa3a8d9460b804163358d6217363153</citedby><cites>FETCH-LOGICAL-c528t-2f594a50dc8772bc85c5773879cd674686fa3a8d9460b804163358d6217363153</cites><orcidid>0000-0002-5075-3209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0391398820978656$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0391398820978656$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33300399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morita, Nobutomo</creatorcontrib><creatorcontrib>Sakota, Daisuke</creatorcontrib><creatorcontrib>Oota-Ishigaki, Akiko</creatorcontrib><creatorcontrib>Kosaka, Ryo</creatorcontrib><creatorcontrib>Maruyama, Osamu</creatorcontrib><creatorcontrib>Nishida, Masahiro</creatorcontrib><creatorcontrib>Kondo, Kazuki</creatorcontrib><creatorcontrib>Takeshita, Toshihiro</creatorcontrib><creatorcontrib>Iwasaki, Wataru</creatorcontrib><title>Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors</title><title>International journal of artificial organs</title><addtitle>Int J Artif Organs</addtitle><description>Introduction: Real-time, non-invasive monitoring of thrombus formation in extracorporeal circuits has yet to be achieved. To address the challenges of conventional optical thrombus detection methods requiring large devices that limit detection capacity, we developed a micro-optical thrombus sensor. Methods: The proposed micro-optical thrombus sensor can detect the intensity of light scattered by blood at wavelengths of 660 and 855 nm. Two thrombus sensors were installed on in vitro circuit: one at the rotary blood pump and one at a flow channel. To evaluate the variation in the ratio of incident light intensity at each wavelength of the two sensors, Rfluct (for 660 nm) and Ifluct (for 855 nm) were defined. Using fresh porcine blood as a working fluid, we performed in vitro tests of haematocrit (Hct) and oxygen saturation (SaO2) variation and thrombus detection. Thrombus tests were terminated after Rfluct or Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. Results: In all three thrombus detection tests, Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. After the tests, thrombus formation was confirmed in the pump, and there was no thrombus in the flow channel. The results indicate that Ifluct is an effective parameter for identifying the presence of a thrombus. Conclusion: Thrombus detection in an extracorporeal circuit using the developed micro-optical sensors was successfully demonstrated in an in vitro test.</description><subject>Blood</subject><subject>Blood clots</subject><subject>Blood pumps</subject><subject>Circuits</subject><subject>Hematocrit</subject><subject>In vitro methods and tests</subject><subject>Incident light</subject><subject>Light intensity</subject><subject>Luminous intensity</subject><subject>Optical measuring instruments</subject><subject>Original s</subject><subject>Oxygen content</subject><subject>Parameter identification</subject><subject>Real time</subject><subject>Sensors</subject><subject>Thrombosis</subject><subject>Variation</subject><subject>Wavelengths</subject><subject>Working fluids</subject><issn>0391-3988</issn><issn>1724-6040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kc1rVDEUxYModlrddyUBNy6MzffHplCKX1AQpK5DJi8zTXkvmSZ5Q_vfm2HqWAuusji_c3LvPQCcEvyJEKXOMDOEGa0pNkpLIV-ABVGUI4k5fgkWOxnt9CNwXOstxkRyLl6DI8YY7qJZgPFncCNqcQofYcoJxbR1NW4DbDclT8u5wiG04FvMCcYEXYLhvhXnc9nk0q3Qx-Ln2OBcY1rDKfqSUd606Lt2yKgh1VzqG_Bq5cYa3j6-J-DXl8_Xl9_Q1Y-v3y8vrpAXVDdEV8JwJ_DgtVJ06bXwQimmlfGDVFxquXLM6cFwiZcacyIZE3qQlCgmGRHsBJzvczfzcgqDD6mPPNpNiZMrDza7aP9VUryx67y1mklJ1C7gw2NAyXdzqM1Osfowji6FPFdLuTRYG0ZlR98_Q2_zXFJfz1IhqaGCUN4pvKf6eWotYXUYhmC7q9I-r7Jb3j1d4mD4010H0B6obh3-_vrfwN_p6acr</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Morita, Nobutomo</creator><creator>Sakota, Daisuke</creator><creator>Oota-Ishigaki, Akiko</creator><creator>Kosaka, Ryo</creator><creator>Maruyama, Osamu</creator><creator>Nishida, Masahiro</creator><creator>Kondo, Kazuki</creator><creator>Takeshita, Toshihiro</creator><creator>Iwasaki, Wataru</creator><general>SAGE Publications</general><general>Wichtig Editore s.r.l</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5075-3209</orcidid></search><sort><creationdate>20210801</creationdate><title>Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors</title><author>Morita, Nobutomo ; Sakota, Daisuke ; Oota-Ishigaki, Akiko ; Kosaka, Ryo ; Maruyama, Osamu ; Nishida, Masahiro ; Kondo, Kazuki ; Takeshita, Toshihiro ; Iwasaki, Wataru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-2f594a50dc8772bc85c5773879cd674686fa3a8d9460b804163358d6217363153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blood</topic><topic>Blood clots</topic><topic>Blood pumps</topic><topic>Circuits</topic><topic>Hematocrit</topic><topic>In vitro methods and tests</topic><topic>Incident light</topic><topic>Light intensity</topic><topic>Luminous intensity</topic><topic>Optical measuring instruments</topic><topic>Original s</topic><topic>Oxygen content</topic><topic>Parameter identification</topic><topic>Real time</topic><topic>Sensors</topic><topic>Thrombosis</topic><topic>Variation</topic><topic>Wavelengths</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morita, Nobutomo</creatorcontrib><creatorcontrib>Sakota, Daisuke</creatorcontrib><creatorcontrib>Oota-Ishigaki, Akiko</creatorcontrib><creatorcontrib>Kosaka, Ryo</creatorcontrib><creatorcontrib>Maruyama, Osamu</creatorcontrib><creatorcontrib>Nishida, Masahiro</creatorcontrib><creatorcontrib>Kondo, Kazuki</creatorcontrib><creatorcontrib>Takeshita, Toshihiro</creatorcontrib><creatorcontrib>Iwasaki, Wataru</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morita, Nobutomo</au><au>Sakota, Daisuke</au><au>Oota-Ishigaki, Akiko</au><au>Kosaka, Ryo</au><au>Maruyama, Osamu</au><au>Nishida, Masahiro</au><au>Kondo, Kazuki</au><au>Takeshita, Toshihiro</au><au>Iwasaki, Wataru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors</atitle><jtitle>International journal of artificial organs</jtitle><addtitle>Int J Artif Organs</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>44</volume><issue>8</issue><spage>565</spage><epage>573</epage><pages>565-573</pages><issn>0391-3988</issn><eissn>1724-6040</eissn><abstract>Introduction: Real-time, non-invasive monitoring of thrombus formation in extracorporeal circuits has yet to be achieved. To address the challenges of conventional optical thrombus detection methods requiring large devices that limit detection capacity, we developed a micro-optical thrombus sensor. Methods: The proposed micro-optical thrombus sensor can detect the intensity of light scattered by blood at wavelengths of 660 and 855 nm. Two thrombus sensors were installed on in vitro circuit: one at the rotary blood pump and one at a flow channel. To evaluate the variation in the ratio of incident light intensity at each wavelength of the two sensors, Rfluct (for 660 nm) and Ifluct (for 855 nm) were defined. Using fresh porcine blood as a working fluid, we performed in vitro tests of haematocrit (Hct) and oxygen saturation (SaO2) variation and thrombus detection. Thrombus tests were terminated after Rfluct or Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. Results: In all three thrombus detection tests, Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. After the tests, thrombus formation was confirmed in the pump, and there was no thrombus in the flow channel. The results indicate that Ifluct is an effective parameter for identifying the presence of a thrombus. Conclusion: Thrombus detection in an extracorporeal circuit using the developed micro-optical sensors was successfully demonstrated in an in vitro test.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>33300399</pmid><doi>10.1177/0391398820978656</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5075-3209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0391-3988
ispartof International journal of artificial organs, 2021-08, Vol.44 (8), p.565-573
issn 0391-3988
1724-6040
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366175
source Access via SAGE
subjects Blood
Blood clots
Blood pumps
Circuits
Hematocrit
In vitro methods and tests
Incident light
Light intensity
Luminous intensity
Optical measuring instruments
Original s
Oxygen content
Parameter identification
Real time
Sensors
Thrombosis
Variation
Wavelengths
Working fluids
title Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time,%20non-invasive%20thrombus%20detection%20in%20an%20extracorporeal%20circuit%20using%20micro-optical%20thrombus%20sensors&rft.jtitle=International%20journal%20of%20artificial%20organs&rft.au=Morita,%20Nobutomo&rft.date=2021-08-01&rft.volume=44&rft.issue=8&rft.spage=565&rft.epage=573&rft.pages=565-573&rft.issn=0391-3988&rft.eissn=1724-6040&rft_id=info:doi/10.1177/0391398820978656&rft_dat=%3Cproquest_pubme%3E2562925124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562925124&rft_id=info:pmid/33300399&rft_sage_id=10.1177_0391398820978656&rfr_iscdi=true