Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators

Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2021-08, Vol.131 (16), p.1-11
Hauptverfasser: Rehman, Tayyab, Karp, Philip H, Tan, Ping, Goodell, Brian J, Pezzulo, Alejandro A, Thurman, Andrew L, Thornell, Ian M, Durfey, Samantha L, Duffey, Michael E, Stoltz, David A, McKone, Edward F, Singh, Pradeep K, Welsh, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 16
container_start_page 1
container_title The Journal of clinical investigation
container_volume 131
creator Rehman, Tayyab
Karp, Philip H
Tan, Ping
Goodell, Brian J
Pezzulo, Alejandro A
Thurman, Andrew L
Thornell, Ian M
Durfey, Samantha L
Duffey, Michael E
Stoltz, David A
McKone, Edward F
Singh, Pradeep K
Welsh, Michael J
description Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.
doi_str_mv 10.1172/JCI150398
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8363270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545599463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-b7d328c108584ebe09d216048c7d58abb43d729d7496601d07cede88f9530a3e3</originalsourceid><addsrcrecordid>eNpdkU1uFDEQhS0EIiGw4ALIEhuyaLDbv71BQiMCg0awCWvLbVdnHLrtYHcjzYY7cZGcCQ8TRoFVleSvnl_VQ-g5Ja8pVe2bT6s1FYR1-gE6pULoRrdMP7zXn6AnpVwTQjkX_DE6YZxK2TJyin6u4zDaabJzyjvsdnP6FiIUfPn5orn9hW30eL1pqMIQtzY6wPMWMAxDcNbtcBrqSJmDw0Pocyqh4DnbWCaY-loBuxT94uY_kxmulnH_D56SP3TlKXo02LHAs7t6hr5evL9cfWw2Xz6sV-82jeOEzU2vPGu1o0QLzaEH0vmWSsK1U15o2_ecedV2XvFOSkI9UQ48aD10ghHLgJ2htwfdm6WfwDuI1edobnKYbN6ZZIP59yWGrblKP4xmkrWKVIFXdwI5fV-gzGYKxcE41i3TUkwruBBdxyWr6Mv_0Ou05FjXq5TUSlIt94LnB8rVu5UMw9EMJWafqjmmWtkX990fyb8xst8fK58V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568761860</pqid></control><display><type>article</type><title>Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rehman, Tayyab ; Karp, Philip H ; Tan, Ping ; Goodell, Brian J ; Pezzulo, Alejandro A ; Thurman, Andrew L ; Thornell, Ian M ; Durfey, Samantha L ; Duffey, Michael E ; Stoltz, David A ; McKone, Edward F ; Singh, Pradeep K ; Welsh, Michael J</creator><creatorcontrib>Rehman, Tayyab ; Karp, Philip H ; Tan, Ping ; Goodell, Brian J ; Pezzulo, Alejandro A ; Thurman, Andrew L ; Thornell, Ian M ; Durfey, Samantha L ; Duffey, Michael E ; Stoltz, David A ; McKone, Edward F ; Singh, Pradeep K ; Welsh, Michael J</creatorcontrib><description>Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.</description><identifier>ISSN: 1558-8238</identifier><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI150398</identifier><identifier>PMID: 34166230</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject><![CDATA[Acids ; Aminophenols - administration & dosage ; Benzodioxoles - administration & dosage ; Bicarbonates - metabolism ; Biomedical research ; Birth ; Cells, Cultured ; Chlorides ; Cystic fibrosis ; Cystic Fibrosis - drug therapy ; Cystic Fibrosis - immunology ; Cystic Fibrosis - physiopathology ; Cystic Fibrosis Transmembrane Conductance Regulator - drug effects ; Cystic Fibrosis Transmembrane Conductance Regulator - genetics ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Cytokines ; Drug Combinations ; Gene expression ; Humans ; Hydrogen-Ion Concentration ; Hypotheses ; Indoles - administration & dosage ; Infant ; Infant, Newborn ; Inflammation ; Interleukin 17 ; Interleukin-17 - administration & dosage ; Interleukin-17 - metabolism ; Ion Transport ; Mutation ; Neonates ; pH effects ; Pyrazoles - administration & dosage ; Pyridines - administration & dosage ; Quinolines - administration & dosage ; Respiratory function ; Respiratory Mucosa - drug effects ; Respiratory Mucosa - immunology ; Respiratory Mucosa - metabolism ; Respiratory tract ; Respiratory tract diseases ; Sulfate Transporters - genetics ; Sulfate Transporters - metabolism ; Tumor Necrosis Factor-alpha - administration & dosage ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-α]]></subject><ispartof>The Journal of clinical investigation, 2021-08, Vol.131 (16), p.1-11</ispartof><rights>Copyright American Society for Clinical Investigation Aug 2021</rights><rights>2021 American Society for Clinical Investigation 2021 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-b7d328c108584ebe09d216048c7d58abb43d729d7496601d07cede88f9530a3e3</citedby><cites>FETCH-LOGICAL-c403t-b7d328c108584ebe09d216048c7d58abb43d729d7496601d07cede88f9530a3e3</cites><orcidid>0000-0002-1646-6206 ; 0000-0002-7777-4165 ; 0000-0002-7949-1150 ; 0000-0001-7792-201X ; 0000-0001-7544-5109 ; 0000-0003-0893-9015 ; 0000-0001-5535-2925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363270/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363270/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34166230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehman, Tayyab</creatorcontrib><creatorcontrib>Karp, Philip H</creatorcontrib><creatorcontrib>Tan, Ping</creatorcontrib><creatorcontrib>Goodell, Brian J</creatorcontrib><creatorcontrib>Pezzulo, Alejandro A</creatorcontrib><creatorcontrib>Thurman, Andrew L</creatorcontrib><creatorcontrib>Thornell, Ian M</creatorcontrib><creatorcontrib>Durfey, Samantha L</creatorcontrib><creatorcontrib>Duffey, Michael E</creatorcontrib><creatorcontrib>Stoltz, David A</creatorcontrib><creatorcontrib>McKone, Edward F</creatorcontrib><creatorcontrib>Singh, Pradeep K</creatorcontrib><creatorcontrib>Welsh, Michael J</creatorcontrib><title>Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.</description><subject>Acids</subject><subject>Aminophenols - administration &amp; dosage</subject><subject>Benzodioxoles - administration &amp; dosage</subject><subject>Bicarbonates - metabolism</subject><subject>Biomedical research</subject><subject>Birth</subject><subject>Cells, Cultured</subject><subject>Chlorides</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - drug therapy</subject><subject>Cystic Fibrosis - immunology</subject><subject>Cystic Fibrosis - physiopathology</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - drug effects</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Cytokines</subject><subject>Drug Combinations</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hypotheses</subject><subject>Indoles - administration &amp; dosage</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Inflammation</subject><subject>Interleukin 17</subject><subject>Interleukin-17 - administration &amp; dosage</subject><subject>Interleukin-17 - metabolism</subject><subject>Ion Transport</subject><subject>Mutation</subject><subject>Neonates</subject><subject>pH effects</subject><subject>Pyrazoles - administration &amp; dosage</subject><subject>Pyridines - administration &amp; dosage</subject><subject>Quinolines - administration &amp; dosage</subject><subject>Respiratory function</subject><subject>Respiratory Mucosa - drug effects</subject><subject>Respiratory Mucosa - immunology</subject><subject>Respiratory Mucosa - metabolism</subject><subject>Respiratory tract</subject><subject>Respiratory tract diseases</subject><subject>Sulfate Transporters - genetics</subject><subject>Sulfate Transporters - metabolism</subject><subject>Tumor Necrosis Factor-alpha - administration &amp; dosage</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-α</subject><issn>1558-8238</issn><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU1uFDEQhS0EIiGw4ALIEhuyaLDbv71BQiMCg0awCWvLbVdnHLrtYHcjzYY7cZGcCQ8TRoFVleSvnl_VQ-g5Ja8pVe2bT6s1FYR1-gE6pULoRrdMP7zXn6AnpVwTQjkX_DE6YZxK2TJyin6u4zDaabJzyjvsdnP6FiIUfPn5orn9hW30eL1pqMIQtzY6wPMWMAxDcNbtcBrqSJmDw0Pocyqh4DnbWCaY-loBuxT94uY_kxmulnH_D56SP3TlKXo02LHAs7t6hr5evL9cfWw2Xz6sV-82jeOEzU2vPGu1o0QLzaEH0vmWSsK1U15o2_ecedV2XvFOSkI9UQ48aD10ghHLgJ2htwfdm6WfwDuI1edobnKYbN6ZZIP59yWGrblKP4xmkrWKVIFXdwI5fV-gzGYKxcE41i3TUkwruBBdxyWr6Mv_0Ou05FjXq5TUSlIt94LnB8rVu5UMw9EMJWafqjmmWtkX990fyb8xst8fK58V</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Rehman, Tayyab</creator><creator>Karp, Philip H</creator><creator>Tan, Ping</creator><creator>Goodell, Brian J</creator><creator>Pezzulo, Alejandro A</creator><creator>Thurman, Andrew L</creator><creator>Thornell, Ian M</creator><creator>Durfey, Samantha L</creator><creator>Duffey, Michael E</creator><creator>Stoltz, David A</creator><creator>McKone, Edward F</creator><creator>Singh, Pradeep K</creator><creator>Welsh, Michael J</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1646-6206</orcidid><orcidid>https://orcid.org/0000-0002-7777-4165</orcidid><orcidid>https://orcid.org/0000-0002-7949-1150</orcidid><orcidid>https://orcid.org/0000-0001-7792-201X</orcidid><orcidid>https://orcid.org/0000-0001-7544-5109</orcidid><orcidid>https://orcid.org/0000-0003-0893-9015</orcidid><orcidid>https://orcid.org/0000-0001-5535-2925</orcidid></search><sort><creationdate>20210816</creationdate><title>Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators</title><author>Rehman, Tayyab ; Karp, Philip H ; Tan, Ping ; Goodell, Brian J ; Pezzulo, Alejandro A ; Thurman, Andrew L ; Thornell, Ian M ; Durfey, Samantha L ; Duffey, Michael E ; Stoltz, David A ; McKone, Edward F ; Singh, Pradeep K ; Welsh, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-b7d328c108584ebe09d216048c7d58abb43d729d7496601d07cede88f9530a3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Aminophenols - administration &amp; dosage</topic><topic>Benzodioxoles - administration &amp; dosage</topic><topic>Bicarbonates - metabolism</topic><topic>Biomedical research</topic><topic>Birth</topic><topic>Cells, Cultured</topic><topic>Chlorides</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - drug therapy</topic><topic>Cystic Fibrosis - immunology</topic><topic>Cystic Fibrosis - physiopathology</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - drug effects</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - genetics</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Cytokines</topic><topic>Drug Combinations</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hypotheses</topic><topic>Indoles - administration &amp; dosage</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Inflammation</topic><topic>Interleukin 17</topic><topic>Interleukin-17 - administration &amp; dosage</topic><topic>Interleukin-17 - metabolism</topic><topic>Ion Transport</topic><topic>Mutation</topic><topic>Neonates</topic><topic>pH effects</topic><topic>Pyrazoles - administration &amp; dosage</topic><topic>Pyridines - administration &amp; dosage</topic><topic>Quinolines - administration &amp; dosage</topic><topic>Respiratory function</topic><topic>Respiratory Mucosa - drug effects</topic><topic>Respiratory Mucosa - immunology</topic><topic>Respiratory Mucosa - metabolism</topic><topic>Respiratory tract</topic><topic>Respiratory tract diseases</topic><topic>Sulfate Transporters - genetics</topic><topic>Sulfate Transporters - metabolism</topic><topic>Tumor Necrosis Factor-alpha - administration &amp; dosage</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Tayyab</creatorcontrib><creatorcontrib>Karp, Philip H</creatorcontrib><creatorcontrib>Tan, Ping</creatorcontrib><creatorcontrib>Goodell, Brian J</creatorcontrib><creatorcontrib>Pezzulo, Alejandro A</creatorcontrib><creatorcontrib>Thurman, Andrew L</creatorcontrib><creatorcontrib>Thornell, Ian M</creatorcontrib><creatorcontrib>Durfey, Samantha L</creatorcontrib><creatorcontrib>Duffey, Michael E</creatorcontrib><creatorcontrib>Stoltz, David A</creatorcontrib><creatorcontrib>McKone, Edward F</creatorcontrib><creatorcontrib>Singh, Pradeep K</creatorcontrib><creatorcontrib>Welsh, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Tayyab</au><au>Karp, Philip H</au><au>Tan, Ping</au><au>Goodell, Brian J</au><au>Pezzulo, Alejandro A</au><au>Thurman, Andrew L</au><au>Thornell, Ian M</au><au>Durfey, Samantha L</au><au>Duffey, Michael E</au><au>Stoltz, David A</au><au>McKone, Edward F</au><au>Singh, Pradeep K</au><au>Welsh, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2021-08-16</date><risdate>2021</risdate><volume>131</volume><issue>16</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1558-8238</issn><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Without cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) HCO3- secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl-/HCO3- exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. As predicted by these results, in vivo data revealed a positive correlation between airway inflammation and CFTR modulator-induced improvement in lung function. These findings suggest that inflammation is a key regulator of HCO3- secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>34166230</pmid><doi>10.1172/JCI150398</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1646-6206</orcidid><orcidid>https://orcid.org/0000-0002-7777-4165</orcidid><orcidid>https://orcid.org/0000-0002-7949-1150</orcidid><orcidid>https://orcid.org/0000-0001-7792-201X</orcidid><orcidid>https://orcid.org/0000-0001-7544-5109</orcidid><orcidid>https://orcid.org/0000-0003-0893-9015</orcidid><orcidid>https://orcid.org/0000-0001-5535-2925</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8238
ispartof The Journal of clinical investigation, 2021-08, Vol.131 (16), p.1-11
issn 1558-8238
0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8363270
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acids
Aminophenols - administration & dosage
Benzodioxoles - administration & dosage
Bicarbonates - metabolism
Biomedical research
Birth
Cells, Cultured
Chlorides
Cystic fibrosis
Cystic Fibrosis - drug therapy
Cystic Fibrosis - immunology
Cystic Fibrosis - physiopathology
Cystic Fibrosis Transmembrane Conductance Regulator - drug effects
Cystic Fibrosis Transmembrane Conductance Regulator - genetics
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Cytokines
Drug Combinations
Gene expression
Humans
Hydrogen-Ion Concentration
Hypotheses
Indoles - administration & dosage
Infant
Infant, Newborn
Inflammation
Interleukin 17
Interleukin-17 - administration & dosage
Interleukin-17 - metabolism
Ion Transport
Mutation
Neonates
pH effects
Pyrazoles - administration & dosage
Pyridines - administration & dosage
Quinolines - administration & dosage
Respiratory function
Respiratory Mucosa - drug effects
Respiratory Mucosa - immunology
Respiratory Mucosa - metabolism
Respiratory tract
Respiratory tract diseases
Sulfate Transporters - genetics
Sulfate Transporters - metabolism
Tumor Necrosis Factor-alpha - administration & dosage
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-α
title Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflammatory%20cytokines%20TNF-%CE%B1%20and%20IL-17%20enhance%20the%20efficacy%20of%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20modulators&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Rehman,%20Tayyab&rft.date=2021-08-16&rft.volume=131&rft.issue=16&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1558-8238&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI150398&rft_dat=%3Cproquest_pubme%3E2545599463%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568761860&rft_id=info:pmid/34166230&rfr_iscdi=true