An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (Knightia excelsa) genome

We used long read sequencing data generated from Knightia excelsa, a nectar‐producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome reconstruction. Establishing a high‐quality genome for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology resources 2021-08, Vol.21 (6), p.2125-2144
Hauptverfasser: McCartney, Ann M., Hilario, Elena, Choi, Seung‐Sub, Guhlin, Joseph, Prebble, Jessica M., Houliston, Gary, Buckley, Thomas R., Chagné, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2144
container_issue 6
container_start_page 2125
container_title Molecular ecology resources
container_volume 21
creator McCartney, Ann M.
Hilario, Elena
Choi, Seung‐Sub
Guhlin, Joseph
Prebble, Jessica M.
Houliston, Gary
Buckley, Thomas R.
Chagné, David
description We used long read sequencing data generated from Knightia excelsa, a nectar‐producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome reconstruction. Establishing a high‐quality genome for this species has specific cultural importance to Māori and commercial importance to honey producers in Aotearoa. Assemblies were produced by five long read assemblers using data subsampled based on read lengths, two polishing strategies and two Hi‐C mapping methods. Our results from subsampling the data by read length showed that each assembler tested performed differently depending on the coverage and the read length of the data. Subsampling highlighted that input data with longer read lengths but perhaps lower coverage constructed more contiguous, kmers and gene‐complete assemblies than short read length input data with higher coverage. The final genome assembly was constructed into 14 pseudochromosomes using an initial flye long read assembly, a racon/medaka/pilon combined polishing strategy, salsa2 and allhic scaffolding, juicebox curation, and Macadamia linkage map validation. We highlighted the importance of developing assembly workflows based on the volume and read length of sequencing data and established a robust set of quality metrics for generating high‐quality assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be resolved accurately by Hi‐C data and that assembly scaffolding was more successful when the underlying contig assembly was of higher accuracy. These findings provide insight into how quality assessment tools can be implemented throughout genome assembly pipelines to inform the de novo reconstruction of a high‐quality genome assembly for nonmodel organisms.
doi_str_mv 10.1111/1755-0998.13406
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8362059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2522621370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4676-1f4abd9f07f514dcd88de013df896cf1b94d7c2a1b30d46c790463943fd407a93</originalsourceid><addsrcrecordid>eNqFkc1vFSEUxYnR2FpduzMkburitTB8zLAxaZpqG1vdaOKOMHB5j2ZmeIUZ6_z3Mr76om5KQoDL7x44OQi9puSElnFKayFWRKnmhDJO5BN0uK883e-b7wfoRc63hEiiav4cHTCmhKCNPET5bMDwc9vFZMYQBxw9NjlD33YzzmMpwjpAxmZw-G4yXRhn3MOYgs240OMGsLF2SsbOS-tyTnBvlomPPw1hvRmDKQ9Y6LJ5h9cwxB5eomfedBlePaxH6NuHi6_nl6vrLx-vzs-uV5bLWq6o56Z1ypPaC8qddU3jgFDmfKOk9bRV3NW2MrRlxHFpa0W4ZIoz7zipjWJH6P1Odzu1PTgLQzHU6W0KvUmzjibof2-GsNHr-EM3TFZELALHDwIp3k2QR92HXKx0ZoA4ZV2JqpIVZTUp6Nv_0Ns4paHYK5SoBBeqWgRPd5RNMecEfv8ZSvQSqF4i00t8-negpePN3x72_J8ECyB2wH3oYH5MT99cfN4J_wL_2qyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552545929</pqid></control><display><type>article</type><title>An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (Knightia excelsa) genome</title><source>MEDLINE</source><source>Wiley Journals</source><creator>McCartney, Ann M. ; Hilario, Elena ; Choi, Seung‐Sub ; Guhlin, Joseph ; Prebble, Jessica M. ; Houliston, Gary ; Buckley, Thomas R. ; Chagné, David</creator><creatorcontrib>McCartney, Ann M. ; Hilario, Elena ; Choi, Seung‐Sub ; Guhlin, Joseph ; Prebble, Jessica M. ; Houliston, Gary ; Buckley, Thomas R. ; Chagné, David</creatorcontrib><description>We used long read sequencing data generated from Knightia excelsa, a nectar‐producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome reconstruction. Establishing a high‐quality genome for this species has specific cultural importance to Māori and commercial importance to honey producers in Aotearoa. Assemblies were produced by five long read assemblers using data subsampled based on read lengths, two polishing strategies and two Hi‐C mapping methods. Our results from subsampling the data by read length showed that each assembler tested performed differently depending on the coverage and the read length of the data. Subsampling highlighted that input data with longer read lengths but perhaps lower coverage constructed more contiguous, kmers and gene‐complete assemblies than short read length input data with higher coverage. The final genome assembly was constructed into 14 pseudochromosomes using an initial flye long read assembly, a racon/medaka/pilon combined polishing strategy, salsa2 and allhic scaffolding, juicebox curation, and Macadamia linkage map validation. We highlighted the importance of developing assembly workflows based on the volume and read length of sequencing data and established a robust set of quality metrics for generating high‐quality assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be resolved accurately by Hi‐C data and that assembly scaffolding was more successful when the underlying contig assembly was of higher accuracy. These findings provide insight into how quality assessment tools can be implemented throughout genome assembly pipelines to inform the de novo reconstruction of a high‐quality genome assembly for nonmodel organisms.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13406</identifier><identifier>PMID: 33955186</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Assemblies ; Assembly ; Chromosomes ; de novo assembly ; DNA sequencing ; endemic ; Gene mapping ; Genome, Plant ; Genomes ; Genomics ; High-Throughput Nucleotide Sequencing ; Hi‐C ; Knightia excelsa ; methods ; Nectar ; New Zealand ; next generation sequencing ; Oxford Nanopore ; Polishing ; proteaceae ; Proteaceae - genetics ; Quality assessment ; Quality control ; quality metrics ; Reconstruction ; Resource ; RESOURCE ARTICLES ; rewarewa ; Scaffolding ; Sequence Analysis, DNA</subject><ispartof>Molecular ecology resources, 2021-08, Vol.21 (6), p.2125-2144</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Molecular Ecology Resources published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4676-1f4abd9f07f514dcd88de013df896cf1b94d7c2a1b30d46c790463943fd407a93</citedby><cites>FETCH-LOGICAL-c4676-1f4abd9f07f514dcd88de013df896cf1b94d7c2a1b30d46c790463943fd407a93</cites><orcidid>0000-0003-4018-0694 ; 0000-0002-3076-4234 ; 0000-0003-3191-3200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.13406$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.13406$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33955186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCartney, Ann M.</creatorcontrib><creatorcontrib>Hilario, Elena</creatorcontrib><creatorcontrib>Choi, Seung‐Sub</creatorcontrib><creatorcontrib>Guhlin, Joseph</creatorcontrib><creatorcontrib>Prebble, Jessica M.</creatorcontrib><creatorcontrib>Houliston, Gary</creatorcontrib><creatorcontrib>Buckley, Thomas R.</creatorcontrib><creatorcontrib>Chagné, David</creatorcontrib><title>An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (Knightia excelsa) genome</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>We used long read sequencing data generated from Knightia excelsa, a nectar‐producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome reconstruction. Establishing a high‐quality genome for this species has specific cultural importance to Māori and commercial importance to honey producers in Aotearoa. Assemblies were produced by five long read assemblers using data subsampled based on read lengths, two polishing strategies and two Hi‐C mapping methods. Our results from subsampling the data by read length showed that each assembler tested performed differently depending on the coverage and the read length of the data. Subsampling highlighted that input data with longer read lengths but perhaps lower coverage constructed more contiguous, kmers and gene‐complete assemblies than short read length input data with higher coverage. The final genome assembly was constructed into 14 pseudochromosomes using an initial flye long read assembly, a racon/medaka/pilon combined polishing strategy, salsa2 and allhic scaffolding, juicebox curation, and Macadamia linkage map validation. We highlighted the importance of developing assembly workflows based on the volume and read length of sequencing data and established a robust set of quality metrics for generating high‐quality assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be resolved accurately by Hi‐C data and that assembly scaffolding was more successful when the underlying contig assembly was of higher accuracy. These findings provide insight into how quality assessment tools can be implemented throughout genome assembly pipelines to inform the de novo reconstruction of a high‐quality genome assembly for nonmodel organisms.</description><subject>Accuracy</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Chromosomes</subject><subject>de novo assembly</subject><subject>DNA sequencing</subject><subject>endemic</subject><subject>Gene mapping</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Hi‐C</subject><subject>Knightia excelsa</subject><subject>methods</subject><subject>Nectar</subject><subject>New Zealand</subject><subject>next generation sequencing</subject><subject>Oxford Nanopore</subject><subject>Polishing</subject><subject>proteaceae</subject><subject>Proteaceae - genetics</subject><subject>Quality assessment</subject><subject>Quality control</subject><subject>quality metrics</subject><subject>Reconstruction</subject><subject>Resource</subject><subject>RESOURCE ARTICLES</subject><subject>rewarewa</subject><subject>Scaffolding</subject><subject>Sequence Analysis, DNA</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1vFSEUxYnR2FpduzMkburitTB8zLAxaZpqG1vdaOKOMHB5j2ZmeIUZ6_z3Mr76om5KQoDL7x44OQi9puSElnFKayFWRKnmhDJO5BN0uK883e-b7wfoRc63hEiiav4cHTCmhKCNPET5bMDwc9vFZMYQBxw9NjlD33YzzmMpwjpAxmZw-G4yXRhn3MOYgs240OMGsLF2SsbOS-tyTnBvlomPPw1hvRmDKQ9Y6LJ5h9cwxB5eomfedBlePaxH6NuHi6_nl6vrLx-vzs-uV5bLWq6o56Z1ypPaC8qddU3jgFDmfKOk9bRV3NW2MrRlxHFpa0W4ZIoz7zipjWJH6P1Odzu1PTgLQzHU6W0KvUmzjibof2-GsNHr-EM3TFZELALHDwIp3k2QR92HXKx0ZoA4ZV2JqpIVZTUp6Nv_0Ns4paHYK5SoBBeqWgRPd5RNMecEfv8ZSvQSqF4i00t8-negpePN3x72_J8ECyB2wH3oYH5MT99cfN4J_wL_2qyE</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>McCartney, Ann M.</creator><creator>Hilario, Elena</creator><creator>Choi, Seung‐Sub</creator><creator>Guhlin, Joseph</creator><creator>Prebble, Jessica M.</creator><creator>Houliston, Gary</creator><creator>Buckley, Thomas R.</creator><creator>Chagné, David</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4018-0694</orcidid><orcidid>https://orcid.org/0000-0002-3076-4234</orcidid><orcidid>https://orcid.org/0000-0003-3191-3200</orcidid></search><sort><creationdate>202108</creationdate><title>An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (Knightia excelsa) genome</title><author>McCartney, Ann M. ; Hilario, Elena ; Choi, Seung‐Sub ; Guhlin, Joseph ; Prebble, Jessica M. ; Houliston, Gary ; Buckley, Thomas R. ; Chagné, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4676-1f4abd9f07f514dcd88de013df896cf1b94d7c2a1b30d46c790463943fd407a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Chromosomes</topic><topic>de novo assembly</topic><topic>DNA sequencing</topic><topic>endemic</topic><topic>Gene mapping</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Hi‐C</topic><topic>Knightia excelsa</topic><topic>methods</topic><topic>Nectar</topic><topic>New Zealand</topic><topic>next generation sequencing</topic><topic>Oxford Nanopore</topic><topic>Polishing</topic><topic>proteaceae</topic><topic>Proteaceae - genetics</topic><topic>Quality assessment</topic><topic>Quality control</topic><topic>quality metrics</topic><topic>Reconstruction</topic><topic>Resource</topic><topic>RESOURCE ARTICLES</topic><topic>rewarewa</topic><topic>Scaffolding</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCartney, Ann M.</creatorcontrib><creatorcontrib>Hilario, Elena</creatorcontrib><creatorcontrib>Choi, Seung‐Sub</creatorcontrib><creatorcontrib>Guhlin, Joseph</creatorcontrib><creatorcontrib>Prebble, Jessica M.</creatorcontrib><creatorcontrib>Houliston, Gary</creatorcontrib><creatorcontrib>Buckley, Thomas R.</creatorcontrib><creatorcontrib>Chagné, David</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCartney, Ann M.</au><au>Hilario, Elena</au><au>Choi, Seung‐Sub</au><au>Guhlin, Joseph</au><au>Prebble, Jessica M.</au><au>Houliston, Gary</au><au>Buckley, Thomas R.</au><au>Chagné, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (Knightia excelsa) genome</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2021-08</date><risdate>2021</risdate><volume>21</volume><issue>6</issue><spage>2125</spage><epage>2144</epage><pages>2125-2144</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>We used long read sequencing data generated from Knightia excelsa, a nectar‐producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how sequencing data type, volume and workflows can impact final assembly accuracy and chromosome reconstruction. Establishing a high‐quality genome for this species has specific cultural importance to Māori and commercial importance to honey producers in Aotearoa. Assemblies were produced by five long read assemblers using data subsampled based on read lengths, two polishing strategies and two Hi‐C mapping methods. Our results from subsampling the data by read length showed that each assembler tested performed differently depending on the coverage and the read length of the data. Subsampling highlighted that input data with longer read lengths but perhaps lower coverage constructed more contiguous, kmers and gene‐complete assemblies than short read length input data with higher coverage. The final genome assembly was constructed into 14 pseudochromosomes using an initial flye long read assembly, a racon/medaka/pilon combined polishing strategy, salsa2 and allhic scaffolding, juicebox curation, and Macadamia linkage map validation. We highlighted the importance of developing assembly workflows based on the volume and read length of sequencing data and established a robust set of quality metrics for generating high‐quality assemblies. Scaffolding analyses highlighted that problems found in the initial assemblies could not be resolved accurately by Hi‐C data and that assembly scaffolding was more successful when the underlying contig assembly was of higher accuracy. These findings provide insight into how quality assessment tools can be implemented throughout genome assembly pipelines to inform the de novo reconstruction of a high‐quality genome assembly for nonmodel organisms.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33955186</pmid><doi>10.1111/1755-0998.13406</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4018-0694</orcidid><orcidid>https://orcid.org/0000-0002-3076-4234</orcidid><orcidid>https://orcid.org/0000-0003-3191-3200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2021-08, Vol.21 (6), p.2125-2144
issn 1755-098X
1755-0998
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8362059
source MEDLINE; Wiley Journals
subjects Accuracy
Assemblies
Assembly
Chromosomes
de novo assembly
DNA sequencing
endemic
Gene mapping
Genome, Plant
Genomes
Genomics
High-Throughput Nucleotide Sequencing
Hi‐C
Knightia excelsa
methods
Nectar
New Zealand
next generation sequencing
Oxford Nanopore
Polishing
proteaceae
Proteaceae - genetics
Quality assessment
Quality control
quality metrics
Reconstruction
Resource
RESOURCE ARTICLES
rewarewa
Scaffolding
Sequence Analysis, DNA
title An exploration of assembly strategies and quality metrics on the accuracy of the rewarewa (Knightia excelsa) genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exploration%20of%20assembly%20strategies%20and%20quality%20metrics%20on%20the%20accuracy%20of%20the%20rewarewa%20(Knightia%20excelsa)%20genome&rft.jtitle=Molecular%20ecology%20resources&rft.au=McCartney,%20Ann%20M.&rft.date=2021-08&rft.volume=21&rft.issue=6&rft.spage=2125&rft.epage=2144&rft.pages=2125-2144&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13406&rft_dat=%3Cproquest_pubme%3E2522621370%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552545929&rft_id=info:pmid/33955186&rfr_iscdi=true