Pyrroloquinoline Quinone Aza‐Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases

Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone‐dependent methanol dehydrogenases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2021-07, Vol.27 (39), p.10087-10098
Hauptverfasser: Vetsova, Violeta A., Fisher, Katherine R., Lumpe, Henning, Schäfer, Alexander, Schneider, Erik K., Weis, Patrick, Daumann, Lena J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10098
container_issue 39
container_start_page 10087
container_title Chemistry : a European journal
container_volume 27
creator Vetsova, Violeta A.
Fisher, Katherine R.
Lumpe, Henning
Schäfer, Alexander
Schneider, Erik K.
Weis, Patrick
Daumann, Lena J.
description Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone‐dependent methanol dehydrogenases (MDH). Here we evaluate a literature‐known pyrroloquinoline quinone (PQQ) and 1‐aza‐15‐crown‐5 based ligand platform as scaffold for Ca2+, Ba2+, La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT‐calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone‐based radical. A pyrroloquinoline quinone (PQQ) based model system was used for the investigation of different factors that may have an impact on the oxidation reaction in the active sites of alcohol dehydrogenase enzymes. Using various metal salts, the influence of ion size and charge, as well as counterions was investigated. The study involves NMR and EPR analysis as well as advanced mass spectrometry techniques.
doi_str_mv 10.1002/chem.202100346
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515685433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4686-7978dd6d48713860d5a389c7087be5568e97b4daf902d8ac07919dcc7bee5ce3</originalsourceid><addsrcrecordid>eNqFkc2OFCEUhStG4_SMbl0aEjduqoWiqoCNSU_ZOiZt1GT2hIbbU0woaKHKsWejj-Az-iTS6bH92bggF7gfJ-dyiuIJwXOCcfVC9zDMK1zlA63be8WMNBUpKWub-8UMi5qVbUPFSXGa0jXGWLSUPixOKOWsqis8K75-2MUYXPg0WR-c9YA-7ne5Lm7Vj2_fuxhuPFqOPUTUhWHr4AskpBI6t2GwA4xWJ7QJEa2UH3vlrQGkvEGdctpOA3oFW_AG_IgWToc-uHzT70wMV-BVgvSoeLBRLsHju3pWXL5eXnYX5er9m7fdYlXquuVtyQTjxrSm5oxQ3mLTKMqFZpizNTRNy0GwdW3URuDKcKUxE0QYrXMXGg30rHh5kN1O6wGMzoaicnIb7aDiTgZl5d8db3t5FT5LTlvCapYFnt8JxPxXkEY52KTBOeUhTElWDckumprSjD77B70OU_R5ukw1OC8icKbmB0rHkFKEzdEMwXIfrdxHK4_R5gdP_xzhiP_KMgPiANxYB7v_yMnuYvnut_hPXLG0Cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550255190</pqid></control><display><type>article</type><title>Pyrroloquinoline Quinone Aza‐Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases</title><source>Wiley Online Library All Journals</source><creator>Vetsova, Violeta A. ; Fisher, Katherine R. ; Lumpe, Henning ; Schäfer, Alexander ; Schneider, Erik K. ; Weis, Patrick ; Daumann, Lena J.</creator><creatorcontrib>Vetsova, Violeta A. ; Fisher, Katherine R. ; Lumpe, Henning ; Schäfer, Alexander ; Schneider, Erik K. ; Weis, Patrick ; Daumann, Lena J.</creatorcontrib><description>Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone‐dependent methanol dehydrogenases (MDH). Here we evaluate a literature‐known pyrroloquinoline quinone (PQQ) and 1‐aza‐15‐crown‐5 based ligand platform as scaffold for Ca2+, Ba2+, La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT‐calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone‐based radical. A pyrroloquinoline quinone (PQQ) based model system was used for the investigation of different factors that may have an impact on the oxidation reaction in the active sites of alcohol dehydrogenase enzymes. Using various metal salts, the influence of ion size and charge, as well as counterions was investigated. The study involves NMR and EPR analysis as well as advanced mass spectrometry techniques.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202100346</identifier><identifier>PMID: 33872420</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>alcohol oxidation ; bioinorganic chemistry ; Biology ; biomimetic synthesis ; Biomimetics ; Calcium ; Calcium ions ; Catalysts ; Chemistry ; Crown ethers ; Dehydrogenases ; Dehydrogenation ; Electron paramagnetic resonance ; Electron spin resonance ; Evaluation ; Ionic mobility ; Lanthanides ; Ligands ; Magnetic resonance spectroscopy ; Metal ions ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Oxidation ; Pyrroloquinoline quinone ; Quinones ; Spectroscopy ; Spectrum analysis ; Vapor phases</subject><ispartof>Chemistry : a European journal, 2021-07, Vol.27 (39), p.10087-10098</ispartof><rights>2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4686-7978dd6d48713860d5a389c7087be5568e97b4daf902d8ac07919dcc7bee5ce3</citedby><cites>FETCH-LOGICAL-c4686-7978dd6d48713860d5a389c7087be5568e97b4daf902d8ac07919dcc7bee5ce3</cites><orcidid>0000-0002-4631-377X ; 0000-0001-7006-6759 ; 0000-0003-2197-136X ; 0000-0003-0260-349X ; 0000-0002-2716-561X ; 0000-0002-2392-3217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202100346$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202100346$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33872420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vetsova, Violeta A.</creatorcontrib><creatorcontrib>Fisher, Katherine R.</creatorcontrib><creatorcontrib>Lumpe, Henning</creatorcontrib><creatorcontrib>Schäfer, Alexander</creatorcontrib><creatorcontrib>Schneider, Erik K.</creatorcontrib><creatorcontrib>Weis, Patrick</creatorcontrib><creatorcontrib>Daumann, Lena J.</creatorcontrib><title>Pyrroloquinoline Quinone Aza‐Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone‐dependent methanol dehydrogenases (MDH). Here we evaluate a literature‐known pyrroloquinoline quinone (PQQ) and 1‐aza‐15‐crown‐5 based ligand platform as scaffold for Ca2+, Ba2+, La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT‐calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone‐based radical. A pyrroloquinoline quinone (PQQ) based model system was used for the investigation of different factors that may have an impact on the oxidation reaction in the active sites of alcohol dehydrogenase enzymes. Using various metal salts, the influence of ion size and charge, as well as counterions was investigated. The study involves NMR and EPR analysis as well as advanced mass spectrometry techniques.</description><subject>alcohol oxidation</subject><subject>bioinorganic chemistry</subject><subject>Biology</subject><subject>biomimetic synthesis</subject><subject>Biomimetics</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Crown ethers</subject><subject>Dehydrogenases</subject><subject>Dehydrogenation</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin resonance</subject><subject>Evaluation</subject><subject>Ionic mobility</subject><subject>Lanthanides</subject><subject>Ligands</subject><subject>Magnetic resonance spectroscopy</subject><subject>Metal ions</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidation</subject><subject>Pyrroloquinoline quinone</subject><subject>Quinones</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Vapor phases</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc2OFCEUhStG4_SMbl0aEjduqoWiqoCNSU_ZOiZt1GT2hIbbU0woaKHKsWejj-Az-iTS6bH92bggF7gfJ-dyiuIJwXOCcfVC9zDMK1zlA63be8WMNBUpKWub-8UMi5qVbUPFSXGa0jXGWLSUPixOKOWsqis8K75-2MUYXPg0WR-c9YA-7ne5Lm7Vj2_fuxhuPFqOPUTUhWHr4AskpBI6t2GwA4xWJ7QJEa2UH3vlrQGkvEGdctpOA3oFW_AG_IgWToc-uHzT70wMV-BVgvSoeLBRLsHju3pWXL5eXnYX5er9m7fdYlXquuVtyQTjxrSm5oxQ3mLTKMqFZpizNTRNy0GwdW3URuDKcKUxE0QYrXMXGg30rHh5kN1O6wGMzoaicnIb7aDiTgZl5d8db3t5FT5LTlvCapYFnt8JxPxXkEY52KTBOeUhTElWDckumprSjD77B70OU_R5ukw1OC8icKbmB0rHkFKEzdEMwXIfrdxHK4_R5gdP_xzhiP_KMgPiANxYB7v_yMnuYvnut_hPXLG0Cw</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Vetsova, Violeta A.</creator><creator>Fisher, Katherine R.</creator><creator>Lumpe, Henning</creator><creator>Schäfer, Alexander</creator><creator>Schneider, Erik K.</creator><creator>Weis, Patrick</creator><creator>Daumann, Lena J.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4631-377X</orcidid><orcidid>https://orcid.org/0000-0001-7006-6759</orcidid><orcidid>https://orcid.org/0000-0003-2197-136X</orcidid><orcidid>https://orcid.org/0000-0003-0260-349X</orcidid><orcidid>https://orcid.org/0000-0002-2716-561X</orcidid><orcidid>https://orcid.org/0000-0002-2392-3217</orcidid></search><sort><creationdate>20210712</creationdate><title>Pyrroloquinoline Quinone Aza‐Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases</title><author>Vetsova, Violeta A. ; Fisher, Katherine R. ; Lumpe, Henning ; Schäfer, Alexander ; Schneider, Erik K. ; Weis, Patrick ; Daumann, Lena J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4686-7978dd6d48713860d5a389c7087be5568e97b4daf902d8ac07919dcc7bee5ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alcohol oxidation</topic><topic>bioinorganic chemistry</topic><topic>Biology</topic><topic>biomimetic synthesis</topic><topic>Biomimetics</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Crown ethers</topic><topic>Dehydrogenases</topic><topic>Dehydrogenation</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin resonance</topic><topic>Evaluation</topic><topic>Ionic mobility</topic><topic>Lanthanides</topic><topic>Ligands</topic><topic>Magnetic resonance spectroscopy</topic><topic>Metal ions</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidation</topic><topic>Pyrroloquinoline quinone</topic><topic>Quinones</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vetsova, Violeta A.</creatorcontrib><creatorcontrib>Fisher, Katherine R.</creatorcontrib><creatorcontrib>Lumpe, Henning</creatorcontrib><creatorcontrib>Schäfer, Alexander</creatorcontrib><creatorcontrib>Schneider, Erik K.</creatorcontrib><creatorcontrib>Weis, Patrick</creatorcontrib><creatorcontrib>Daumann, Lena J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vetsova, Violeta A.</au><au>Fisher, Katherine R.</au><au>Lumpe, Henning</au><au>Schäfer, Alexander</au><au>Schneider, Erik K.</au><au>Weis, Patrick</au><au>Daumann, Lena J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyrroloquinoline Quinone Aza‐Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2021-07-12</date><risdate>2021</risdate><volume>27</volume><issue>39</issue><spage>10087</spage><epage>10098</epage><pages>10087-10098</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone‐dependent methanol dehydrogenases (MDH). Here we evaluate a literature‐known pyrroloquinoline quinone (PQQ) and 1‐aza‐15‐crown‐5 based ligand platform as scaffold for Ca2+, Ba2+, La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT‐calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone‐based radical. A pyrroloquinoline quinone (PQQ) based model system was used for the investigation of different factors that may have an impact on the oxidation reaction in the active sites of alcohol dehydrogenase enzymes. Using various metal salts, the influence of ion size and charge, as well as counterions was investigated. The study involves NMR and EPR analysis as well as advanced mass spectrometry techniques.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33872420</pmid><doi>10.1002/chem.202100346</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4631-377X</orcidid><orcidid>https://orcid.org/0000-0001-7006-6759</orcidid><orcidid>https://orcid.org/0000-0003-2197-136X</orcidid><orcidid>https://orcid.org/0000-0003-0260-349X</orcidid><orcidid>https://orcid.org/0000-0002-2716-561X</orcidid><orcidid>https://orcid.org/0000-0002-2392-3217</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-07, Vol.27 (39), p.10087-10098
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361747
source Wiley Online Library All Journals
subjects alcohol oxidation
bioinorganic chemistry
Biology
biomimetic synthesis
Biomimetics
Calcium
Calcium ions
Catalysts
Chemistry
Crown ethers
Dehydrogenases
Dehydrogenation
Electron paramagnetic resonance
Electron spin resonance
Evaluation
Ionic mobility
Lanthanides
Ligands
Magnetic resonance spectroscopy
Metal ions
NMR
NMR spectroscopy
Nuclear magnetic resonance
Oxidation
Pyrroloquinoline quinone
Quinones
Spectroscopy
Spectrum analysis
Vapor phases
title Pyrroloquinoline Quinone Aza‐Crown Ether Complexes as Biomimetics for Lanthanide and Calcium Dependent Alcohol Dehydrogenases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyrroloquinoline%20Quinone%20Aza%E2%80%90Crown%20Ether%20Complexes%20as%20Biomimetics%20for%20Lanthanide%20and%20Calcium%20Dependent%20Alcohol%20Dehydrogenases&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Vetsova,%20Violeta%20A.&rft.date=2021-07-12&rft.volume=27&rft.issue=39&rft.spage=10087&rft.epage=10098&rft.pages=10087-10098&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202100346&rft_dat=%3Cproquest_pubme%3E2515685433%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550255190&rft_id=info:pmid/33872420&rfr_iscdi=true