Propensity score weighting for causal subgroup analysis
A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this art...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2021-08, Vol.40 (19), p.4294-4309 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4309 |
---|---|
container_issue | 19 |
container_start_page | 4294 |
container_title | Statistics in medicine |
container_volume | 40 |
creator | Yang, Siyun Lorenzi, Elizabeth Papadogeorgou, Georgia Wojdyla, Daniel M. Li, Fan Thomas, Laine E. |
description | A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life. |
doi_str_mv | 10.1002/sim.9029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8360075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552833560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMotlbBXyALXrxsnSTNZnMRpPhRqCio55DNZtuU7aYmXcv-e7e21g_wNDDz8DAzL0KnGPoYgFwGO-8LIGIPdTEIHgNh6T7qAuE8TjhmHXQUwgwAY0b4IepQKlJCcdJF_Mm7hamCXTZR0M6baGXsZLq01SQqnI-0qoMqo1BnE-_qRaQqVTbBhmN0UKgymJNt7aHX25uX4X08frwbDa_HsR7QVMQa4wy0GuQpFyIjSoGgAgqcZ5jrtG3kALkZZCkUhudqoA0hiSY0yZNM80LRHrraeBd1Nje5NtXSq1IuvJ0r30inrPw9qexUTty7TGkCwFkruNgKvHurTVjKuQ3alKWqjKuDJIwkFBgja_T8DzpztW8PXlOMpJSyBL6F2rsQvCl2y2CQ6zRkm4Zcp9GiZz-X34Ff72-BeAOsbGmaf0XyefTwKfwAE1KUrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552833560</pqid></control><display><type>article</type><title>Propensity score weighting for causal subgroup analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Siyun ; Lorenzi, Elizabeth ; Papadogeorgou, Georgia ; Wojdyla, Daniel M. ; Li, Fan ; Thomas, Laine E.</creator><creatorcontrib>Yang, Siyun ; Lorenzi, Elizabeth ; Papadogeorgou, Georgia ; Wojdyla, Daniel M. ; Li, Fan ; Thomas, Laine E.</creatorcontrib><description>A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9029</identifier><identifier>PMID: 33982316</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>balancing weights ; causal inference ; covariate balance ; effect modification ; Fibroids ; interaction ; Medical research ; overlap weights ; propensity score ; Statistical analysis ; subgroup analysis</subject><ispartof>Statistics in medicine, 2021-08, Vol.40 (19), p.4294-4309</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</citedby><cites>FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</cites><orcidid>0000-0003-2895-532X ; 0000-0002-0390-3673 ; 0000-0002-5340-8742 ; 0000-0002-1982-2245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9029$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9029$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33982316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Siyun</creatorcontrib><creatorcontrib>Lorenzi, Elizabeth</creatorcontrib><creatorcontrib>Papadogeorgou, Georgia</creatorcontrib><creatorcontrib>Wojdyla, Daniel M.</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Thomas, Laine E.</creatorcontrib><title>Propensity score weighting for causal subgroup analysis</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.</description><subject>balancing weights</subject><subject>causal inference</subject><subject>covariate balance</subject><subject>effect modification</subject><subject>Fibroids</subject><subject>interaction</subject><subject>Medical research</subject><subject>overlap weights</subject><subject>propensity score</subject><subject>Statistical analysis</subject><subject>subgroup analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LAzEQhoMotlbBXyALXrxsnSTNZnMRpPhRqCio55DNZtuU7aYmXcv-e7e21g_wNDDz8DAzL0KnGPoYgFwGO-8LIGIPdTEIHgNh6T7qAuE8TjhmHXQUwgwAY0b4IepQKlJCcdJF_Mm7hamCXTZR0M6baGXsZLq01SQqnI-0qoMqo1BnE-_qRaQqVTbBhmN0UKgymJNt7aHX25uX4X08frwbDa_HsR7QVMQa4wy0GuQpFyIjSoGgAgqcZ5jrtG3kALkZZCkUhudqoA0hiSY0yZNM80LRHrraeBd1Nje5NtXSq1IuvJ0r30inrPw9qexUTty7TGkCwFkruNgKvHurTVjKuQ3alKWqjKuDJIwkFBgja_T8DzpztW8PXlOMpJSyBL6F2rsQvCl2y2CQ6zRkm4Zcp9GiZz-X34Ff72-BeAOsbGmaf0XyefTwKfwAE1KUrA</recordid><startdate>20210830</startdate><enddate>20210830</enddate><creator>Yang, Siyun</creator><creator>Lorenzi, Elizabeth</creator><creator>Papadogeorgou, Georgia</creator><creator>Wojdyla, Daniel M.</creator><creator>Li, Fan</creator><creator>Thomas, Laine E.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2895-532X</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid><orcidid>https://orcid.org/0000-0002-5340-8742</orcidid><orcidid>https://orcid.org/0000-0002-1982-2245</orcidid></search><sort><creationdate>20210830</creationdate><title>Propensity score weighting for causal subgroup analysis</title><author>Yang, Siyun ; Lorenzi, Elizabeth ; Papadogeorgou, Georgia ; Wojdyla, Daniel M. ; Li, Fan ; Thomas, Laine E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>balancing weights</topic><topic>causal inference</topic><topic>covariate balance</topic><topic>effect modification</topic><topic>Fibroids</topic><topic>interaction</topic><topic>Medical research</topic><topic>overlap weights</topic><topic>propensity score</topic><topic>Statistical analysis</topic><topic>subgroup analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Siyun</creatorcontrib><creatorcontrib>Lorenzi, Elizabeth</creatorcontrib><creatorcontrib>Papadogeorgou, Georgia</creatorcontrib><creatorcontrib>Wojdyla, Daniel M.</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Thomas, Laine E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Siyun</au><au>Lorenzi, Elizabeth</au><au>Papadogeorgou, Georgia</au><au>Wojdyla, Daniel M.</au><au>Li, Fan</au><au>Thomas, Laine E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propensity score weighting for causal subgroup analysis</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-08-30</date><risdate>2021</risdate><volume>40</volume><issue>19</issue><spage>4294</spage><epage>4309</epage><pages>4294-4309</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33982316</pmid><doi>10.1002/sim.9029</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2895-532X</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid><orcidid>https://orcid.org/0000-0002-5340-8742</orcidid><orcidid>https://orcid.org/0000-0002-1982-2245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2021-08, Vol.40 (19), p.4294-4309 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8360075 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | balancing weights causal inference covariate balance effect modification Fibroids interaction Medical research overlap weights propensity score Statistical analysis subgroup analysis |
title | Propensity score weighting for causal subgroup analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propensity%20score%20weighting%20for%20causal%20subgroup%20analysis&rft.jtitle=Statistics%20in%20medicine&rft.au=Yang,%20Siyun&rft.date=2021-08-30&rft.volume=40&rft.issue=19&rft.spage=4294&rft.epage=4309&rft.pages=4294-4309&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9029&rft_dat=%3Cproquest_pubme%3E2552833560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552833560&rft_id=info:pmid/33982316&rfr_iscdi=true |