Propensity score weighting for causal subgroup analysis

A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this art...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2021-08, Vol.40 (19), p.4294-4309
Hauptverfasser: Yang, Siyun, Lorenzi, Elizabeth, Papadogeorgou, Georgia, Wojdyla, Daniel M., Li, Fan, Thomas, Laine E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4309
container_issue 19
container_start_page 4294
container_title Statistics in medicine
container_volume 40
creator Yang, Siyun
Lorenzi, Elizabeth
Papadogeorgou, Georgia
Wojdyla, Daniel M.
Li, Fan
Thomas, Laine E.
description A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.
doi_str_mv 10.1002/sim.9029
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8360075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552833560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMotlbBXyALXrxsnSTNZnMRpPhRqCio55DNZtuU7aYmXcv-e7e21g_wNDDz8DAzL0KnGPoYgFwGO-8LIGIPdTEIHgNh6T7qAuE8TjhmHXQUwgwAY0b4IepQKlJCcdJF_Mm7hamCXTZR0M6baGXsZLq01SQqnI-0qoMqo1BnE-_qRaQqVTbBhmN0UKgymJNt7aHX25uX4X08frwbDa_HsR7QVMQa4wy0GuQpFyIjSoGgAgqcZ5jrtG3kALkZZCkUhudqoA0hiSY0yZNM80LRHrraeBd1Nje5NtXSq1IuvJ0r30inrPw9qexUTty7TGkCwFkruNgKvHurTVjKuQ3alKWqjKuDJIwkFBgja_T8DzpztW8PXlOMpJSyBL6F2rsQvCl2y2CQ6zRkm4Zcp9GiZz-X34Ff72-BeAOsbGmaf0XyefTwKfwAE1KUrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552833560</pqid></control><display><type>article</type><title>Propensity score weighting for causal subgroup analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Siyun ; Lorenzi, Elizabeth ; Papadogeorgou, Georgia ; Wojdyla, Daniel M. ; Li, Fan ; Thomas, Laine E.</creator><creatorcontrib>Yang, Siyun ; Lorenzi, Elizabeth ; Papadogeorgou, Georgia ; Wojdyla, Daniel M. ; Li, Fan ; Thomas, Laine E.</creatorcontrib><description>A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9029</identifier><identifier>PMID: 33982316</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>balancing weights ; causal inference ; covariate balance ; effect modification ; Fibroids ; interaction ; Medical research ; overlap weights ; propensity score ; Statistical analysis ; subgroup analysis</subject><ispartof>Statistics in medicine, 2021-08, Vol.40 (19), p.4294-4309</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Statistics in Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</citedby><cites>FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</cites><orcidid>0000-0003-2895-532X ; 0000-0002-0390-3673 ; 0000-0002-5340-8742 ; 0000-0002-1982-2245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9029$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9029$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33982316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Siyun</creatorcontrib><creatorcontrib>Lorenzi, Elizabeth</creatorcontrib><creatorcontrib>Papadogeorgou, Georgia</creatorcontrib><creatorcontrib>Wojdyla, Daniel M.</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Thomas, Laine E.</creatorcontrib><title>Propensity score weighting for causal subgroup analysis</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.</description><subject>balancing weights</subject><subject>causal inference</subject><subject>covariate balance</subject><subject>effect modification</subject><subject>Fibroids</subject><subject>interaction</subject><subject>Medical research</subject><subject>overlap weights</subject><subject>propensity score</subject><subject>Statistical analysis</subject><subject>subgroup analysis</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1LAzEQhoMotlbBXyALXrxsnSTNZnMRpPhRqCio55DNZtuU7aYmXcv-e7e21g_wNDDz8DAzL0KnGPoYgFwGO-8LIGIPdTEIHgNh6T7qAuE8TjhmHXQUwgwAY0b4IepQKlJCcdJF_Mm7hamCXTZR0M6baGXsZLq01SQqnI-0qoMqo1BnE-_qRaQqVTbBhmN0UKgymJNt7aHX25uX4X08frwbDa_HsR7QVMQa4wy0GuQpFyIjSoGgAgqcZ5jrtG3kALkZZCkUhudqoA0hiSY0yZNM80LRHrraeBd1Nje5NtXSq1IuvJ0r30inrPw9qexUTty7TGkCwFkruNgKvHurTVjKuQ3alKWqjKuDJIwkFBgja_T8DzpztW8PXlOMpJSyBL6F2rsQvCl2y2CQ6zRkm4Zcp9GiZz-X34Ff72-BeAOsbGmaf0XyefTwKfwAE1KUrA</recordid><startdate>20210830</startdate><enddate>20210830</enddate><creator>Yang, Siyun</creator><creator>Lorenzi, Elizabeth</creator><creator>Papadogeorgou, Georgia</creator><creator>Wojdyla, Daniel M.</creator><creator>Li, Fan</creator><creator>Thomas, Laine E.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2895-532X</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid><orcidid>https://orcid.org/0000-0002-5340-8742</orcidid><orcidid>https://orcid.org/0000-0002-1982-2245</orcidid></search><sort><creationdate>20210830</creationdate><title>Propensity score weighting for causal subgroup analysis</title><author>Yang, Siyun ; Lorenzi, Elizabeth ; Papadogeorgou, Georgia ; Wojdyla, Daniel M. ; Li, Fan ; Thomas, Laine E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-c11b0ca4d8799b2aa09390f1db17c8b2ad00de4b80fe7da4ce226c236d6bc7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>balancing weights</topic><topic>causal inference</topic><topic>covariate balance</topic><topic>effect modification</topic><topic>Fibroids</topic><topic>interaction</topic><topic>Medical research</topic><topic>overlap weights</topic><topic>propensity score</topic><topic>Statistical analysis</topic><topic>subgroup analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Siyun</creatorcontrib><creatorcontrib>Lorenzi, Elizabeth</creatorcontrib><creatorcontrib>Papadogeorgou, Georgia</creatorcontrib><creatorcontrib>Wojdyla, Daniel M.</creatorcontrib><creatorcontrib>Li, Fan</creatorcontrib><creatorcontrib>Thomas, Laine E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Siyun</au><au>Lorenzi, Elizabeth</au><au>Papadogeorgou, Georgia</au><au>Wojdyla, Daniel M.</au><au>Li, Fan</au><au>Thomas, Laine E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propensity score weighting for causal subgroup analysis</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-08-30</date><risdate>2021</risdate><volume>40</volume><issue>19</issue><spage>4294</spage><epage>4309</epage><pages>4294-4309</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>A common goal in comparative effectiveness research is to estimate treatment effects on prespecified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis (SGA) remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal SGA. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we propose to use the overlap weighting (OW) method to achieve exact balance within subgroups. We further propose a method that combines OW and LASSO, to balance the bias‐variance tradeoff in SGA. Finally, we design a new diagnostic graph—the Connect‐S plot—for visualizing the subgroup covariate balance. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the patient‐centered results for uterine fibroids (COMPARE‐UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33982316</pmid><doi>10.1002/sim.9029</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2895-532X</orcidid><orcidid>https://orcid.org/0000-0002-0390-3673</orcidid><orcidid>https://orcid.org/0000-0002-5340-8742</orcidid><orcidid>https://orcid.org/0000-0002-1982-2245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2021-08, Vol.40 (19), p.4294-4309
issn 0277-6715
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8360075
source Wiley Online Library Journals Frontfile Complete
subjects balancing weights
causal inference
covariate balance
effect modification
Fibroids
interaction
Medical research
overlap weights
propensity score
Statistical analysis
subgroup analysis
title Propensity score weighting for causal subgroup analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propensity%20score%20weighting%20for%20causal%20subgroup%20analysis&rft.jtitle=Statistics%20in%20medicine&rft.au=Yang,%20Siyun&rft.date=2021-08-30&rft.volume=40&rft.issue=19&rft.spage=4294&rft.epage=4309&rft.pages=4294-4309&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9029&rft_dat=%3Cproquest_pubme%3E2552833560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552833560&rft_id=info:pmid/33982316&rfr_iscdi=true