Shrinkage in serial intervals across transmission generations of COVID-19

•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2021-11, Vol.529, p.110861-110861, Article 110861
Hauptverfasser: Zhao, Shi, Zhao, Yu, Tang, Biao, Gao, Daozhou, Guo, Zihao, Chong, Marc K.C., Musa, Salihu S, Cai, Yongli, Wang, Weiming, He, Daihai, Wang, Maggie H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110861
container_issue
container_start_page 110861
container_title Journal of theoretical biology
container_volume 529
creator Zhao, Shi
Zhao, Yu
Tang, Biao
Gao, Daozhou
Guo, Zihao
Chong, Marc K.C.
Musa, Salihu S
Cai, Yongli
Wang, Weiming
He, Daihai
Wang, Maggie H
description •One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors. One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.
doi_str_mv 10.1016/j.jtbi.2021.110861
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519321002800</els_id><sourcerecordid>S0022519321002800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQfiDBEzt2LCEkVF6VKnXBY2s5ybh1aZPKDpX4e1ICFWxYzUhz752ZQ8g50AQoiMtlsmwLl6Q0hQSA5gIOyBCoyuI843BIhpSmaZyBYgNyEsKSUqo4E8dkwDhTVDIYksnTwrv6zcwxcnUU0Duz6roW_dasQmRK34QQtd7UYe1CcE0dzbFGb9quDVFjo_HsdXIbgzolR7az4Nl3HZGX-7vn8WM8nT1MxjfTuORZ1sayyJmRqUAOyAsrZJ5ToRSmaK0EQQ23qpJCcGUyJQyDyloqZIFcSqEQ2Ihc97mb92KNVYl1d91Kb7xbG_-hG-P030ntFnrebHXOMiFl2gWkfcDXbx7t3gtU78Dqpd6B1TuwugfbmS5-b91bfkh2gqtegN3vW4deh9JhXWLlPJatrhr3X_4n1JCKhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shrinkage in serial intervals across transmission generations of COVID-19</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Shi ; Zhao, Yu ; Tang, Biao ; Gao, Daozhou ; Guo, Zihao ; Chong, Marc K.C. ; Musa, Salihu S ; Cai, Yongli ; Wang, Weiming ; He, Daihai ; Wang, Maggie H</creator><creatorcontrib>Zhao, Shi ; Zhao, Yu ; Tang, Biao ; Gao, Daozhou ; Guo, Zihao ; Chong, Marc K.C. ; Musa, Salihu S ; Cai, Yongli ; Wang, Weiming ; He, Daihai ; Wang, Maggie H</creatorcontrib><description>•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors. One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2021.110861</identifier><identifier>PMID: 34390731</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Contact Tracing ; COVID-19 ; Hong Kong ; Humans ; Likelihood Functions ; SARS-CoV-2 ; Serial interval ; Statistical modelling ; Transmission generation</subject><ispartof>Journal of theoretical biology, 2021-11, Vol.529, p.110861-110861, Article 110861</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</citedby><cites>FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</cites><orcidid>0000-0003-3253-654X ; 0000-0003-3991-569X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2021.110861$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34390731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Shi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Gao, Daozhou</creatorcontrib><creatorcontrib>Guo, Zihao</creatorcontrib><creatorcontrib>Chong, Marc K.C.</creatorcontrib><creatorcontrib>Musa, Salihu S</creatorcontrib><creatorcontrib>Cai, Yongli</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>He, Daihai</creatorcontrib><creatorcontrib>Wang, Maggie H</creatorcontrib><title>Shrinkage in serial intervals across transmission generations of COVID-19</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors. One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.</description><subject>Contact Tracing</subject><subject>COVID-19</subject><subject>Hong Kong</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>SARS-CoV-2</subject><subject>Serial interval</subject><subject>Statistical modelling</subject><subject>Transmission generation</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQfiDBEzt2LCEkVF6VKnXBY2s5ybh1aZPKDpX4e1ICFWxYzUhz752ZQ8g50AQoiMtlsmwLl6Q0hQSA5gIOyBCoyuI843BIhpSmaZyBYgNyEsKSUqo4E8dkwDhTVDIYksnTwrv6zcwxcnUU0Duz6roW_dasQmRK34QQtd7UYe1CcE0dzbFGb9quDVFjo_HsdXIbgzolR7az4Nl3HZGX-7vn8WM8nT1MxjfTuORZ1sayyJmRqUAOyAsrZJ5ToRSmaK0EQQ23qpJCcGUyJQyDyloqZIFcSqEQ2Ihc97mb92KNVYl1d91Kb7xbG_-hG-P030ntFnrebHXOMiFl2gWkfcDXbx7t3gtU78Dqpd6B1TuwugfbmS5-b91bfkh2gqtegN3vW4deh9JhXWLlPJatrhr3X_4n1JCKhw</recordid><startdate>20211121</startdate><enddate>20211121</enddate><creator>Zhao, Shi</creator><creator>Zhao, Yu</creator><creator>Tang, Biao</creator><creator>Gao, Daozhou</creator><creator>Guo, Zihao</creator><creator>Chong, Marc K.C.</creator><creator>Musa, Salihu S</creator><creator>Cai, Yongli</creator><creator>Wang, Weiming</creator><creator>He, Daihai</creator><creator>Wang, Maggie H</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3253-654X</orcidid><orcidid>https://orcid.org/0000-0003-3991-569X</orcidid></search><sort><creationdate>20211121</creationdate><title>Shrinkage in serial intervals across transmission generations of COVID-19</title><author>Zhao, Shi ; Zhao, Yu ; Tang, Biao ; Gao, Daozhou ; Guo, Zihao ; Chong, Marc K.C. ; Musa, Salihu S ; Cai, Yongli ; Wang, Weiming ; He, Daihai ; Wang, Maggie H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Contact Tracing</topic><topic>COVID-19</topic><topic>Hong Kong</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>SARS-CoV-2</topic><topic>Serial interval</topic><topic>Statistical modelling</topic><topic>Transmission generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Gao, Daozhou</creatorcontrib><creatorcontrib>Guo, Zihao</creatorcontrib><creatorcontrib>Chong, Marc K.C.</creatorcontrib><creatorcontrib>Musa, Salihu S</creatorcontrib><creatorcontrib>Cai, Yongli</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>He, Daihai</creatorcontrib><creatorcontrib>Wang, Maggie H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shi</au><au>Zhao, Yu</au><au>Tang, Biao</au><au>Gao, Daozhou</au><au>Guo, Zihao</au><au>Chong, Marc K.C.</au><au>Musa, Salihu S</au><au>Cai, Yongli</au><au>Wang, Weiming</au><au>He, Daihai</au><au>Wang, Maggie H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shrinkage in serial intervals across transmission generations of COVID-19</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2021-11-21</date><risdate>2021</risdate><volume>529</volume><spage>110861</spage><epage>110861</epage><pages>110861-110861</pages><artnum>110861</artnum><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors. One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34390731</pmid><doi>10.1016/j.jtbi.2021.110861</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3253-654X</orcidid><orcidid>https://orcid.org/0000-0003-3991-569X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2021-11, Vol.529, p.110861-110861, Article 110861
issn 0022-5193
1095-8541
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356772
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Contact Tracing
COVID-19
Hong Kong
Humans
Likelihood Functions
SARS-CoV-2
Serial interval
Statistical modelling
Transmission generation
title Shrinkage in serial intervals across transmission generations of COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shrinkage%20in%20serial%20intervals%20across%20transmission%20generations%20of%20COVID-19&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Zhao,%20Shi&rft.date=2021-11-21&rft.volume=529&rft.spage=110861&rft.epage=110861&rft.pages=110861-110861&rft.artnum=110861&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2021.110861&rft_dat=%3Celsevier_pubme%3ES0022519321002800%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34390731&rft_els_id=S0022519321002800&rfr_iscdi=true