Shrinkage in serial intervals across transmission generations of COVID-19
•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2021-11, Vol.529, p.110861-110861, Article 110861 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 110861 |
---|---|
container_issue | |
container_start_page | 110861 |
container_title | Journal of theoretical biology |
container_volume | 529 |
creator | Zhao, Shi Zhao, Yu Tang, Biao Gao, Daozhou Guo, Zihao Chong, Marc K.C. Musa, Salihu S Cai, Yongli Wang, Weiming He, Daihai Wang, Maggie H |
description | •One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors.
One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic. |
doi_str_mv | 10.1016/j.jtbi.2021.110861 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519321002800</els_id><sourcerecordid>S0022519321002800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQfiDBEzt2LCEkVF6VKnXBY2s5ybh1aZPKDpX4e1ICFWxYzUhz752ZQ8g50AQoiMtlsmwLl6Q0hQSA5gIOyBCoyuI843BIhpSmaZyBYgNyEsKSUqo4E8dkwDhTVDIYksnTwrv6zcwxcnUU0Duz6roW_dasQmRK34QQtd7UYe1CcE0dzbFGb9quDVFjo_HsdXIbgzolR7az4Nl3HZGX-7vn8WM8nT1MxjfTuORZ1sayyJmRqUAOyAsrZJ5ToRSmaK0EQQ23qpJCcGUyJQyDyloqZIFcSqEQ2Ihc97mb92KNVYl1d91Kb7xbG_-hG-P030ntFnrebHXOMiFl2gWkfcDXbx7t3gtU78Dqpd6B1TuwugfbmS5-b91bfkh2gqtegN3vW4deh9JhXWLlPJatrhr3X_4n1JCKhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shrinkage in serial intervals across transmission generations of COVID-19</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Shi ; Zhao, Yu ; Tang, Biao ; Gao, Daozhou ; Guo, Zihao ; Chong, Marc K.C. ; Musa, Salihu S ; Cai, Yongli ; Wang, Weiming ; He, Daihai ; Wang, Maggie H</creator><creatorcontrib>Zhao, Shi ; Zhao, Yu ; Tang, Biao ; Gao, Daozhou ; Guo, Zihao ; Chong, Marc K.C. ; Musa, Salihu S ; Cai, Yongli ; Wang, Weiming ; He, Daihai ; Wang, Maggie H</creatorcontrib><description>•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors.
One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2021.110861</identifier><identifier>PMID: 34390731</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Contact Tracing ; COVID-19 ; Hong Kong ; Humans ; Likelihood Functions ; SARS-CoV-2 ; Serial interval ; Statistical modelling ; Transmission generation</subject><ispartof>Journal of theoretical biology, 2021-11, Vol.529, p.110861-110861, Article 110861</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</citedby><cites>FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</cites><orcidid>0000-0003-3253-654X ; 0000-0003-3991-569X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2021.110861$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34390731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Shi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Gao, Daozhou</creatorcontrib><creatorcontrib>Guo, Zihao</creatorcontrib><creatorcontrib>Chong, Marc K.C.</creatorcontrib><creatorcontrib>Musa, Salihu S</creatorcontrib><creatorcontrib>Cai, Yongli</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>He, Daihai</creatorcontrib><creatorcontrib>Wang, Maggie H</creatorcontrib><title>Shrinkage in serial intervals across transmission generations of COVID-19</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors.
One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.</description><subject>Contact Tracing</subject><subject>COVID-19</subject><subject>Hong Kong</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>SARS-CoV-2</subject><subject>Serial interval</subject><subject>Statistical modelling</subject><subject>Transmission generation</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQfiDBEzt2LCEkVF6VKnXBY2s5ybh1aZPKDpX4e1ICFWxYzUhz752ZQ8g50AQoiMtlsmwLl6Q0hQSA5gIOyBCoyuI843BIhpSmaZyBYgNyEsKSUqo4E8dkwDhTVDIYksnTwrv6zcwxcnUU0Duz6roW_dasQmRK34QQtd7UYe1CcE0dzbFGb9quDVFjo_HsdXIbgzolR7az4Nl3HZGX-7vn8WM8nT1MxjfTuORZ1sayyJmRqUAOyAsrZJ5ToRSmaK0EQQ23qpJCcGUyJQyDyloqZIFcSqEQ2Ihc97mb92KNVYl1d91Kb7xbG_-hG-P030ntFnrebHXOMiFl2gWkfcDXbx7t3gtU78Dqpd6B1TuwugfbmS5-b91bfkh2gqtegN3vW4deh9JhXWLlPJatrhr3X_4n1JCKhw</recordid><startdate>20211121</startdate><enddate>20211121</enddate><creator>Zhao, Shi</creator><creator>Zhao, Yu</creator><creator>Tang, Biao</creator><creator>Gao, Daozhou</creator><creator>Guo, Zihao</creator><creator>Chong, Marc K.C.</creator><creator>Musa, Salihu S</creator><creator>Cai, Yongli</creator><creator>Wang, Weiming</creator><creator>He, Daihai</creator><creator>Wang, Maggie H</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3253-654X</orcidid><orcidid>https://orcid.org/0000-0003-3991-569X</orcidid></search><sort><creationdate>20211121</creationdate><title>Shrinkage in serial intervals across transmission generations of COVID-19</title><author>Zhao, Shi ; Zhao, Yu ; Tang, Biao ; Gao, Daozhou ; Guo, Zihao ; Chong, Marc K.C. ; Musa, Salihu S ; Cai, Yongli ; Wang, Weiming ; He, Daihai ; Wang, Maggie H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-7b83a726e41e4bf67880699e2eff7160a4f9d76649a596a31dff067be47769e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Contact Tracing</topic><topic>COVID-19</topic><topic>Hong Kong</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>SARS-CoV-2</topic><topic>Serial interval</topic><topic>Statistical modelling</topic><topic>Transmission generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Shi</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Gao, Daozhou</creatorcontrib><creatorcontrib>Guo, Zihao</creatorcontrib><creatorcontrib>Chong, Marc K.C.</creatorcontrib><creatorcontrib>Musa, Salihu S</creatorcontrib><creatorcontrib>Cai, Yongli</creatorcontrib><creatorcontrib>Wang, Weiming</creatorcontrib><creatorcontrib>He, Daihai</creatorcontrib><creatorcontrib>Wang, Maggie H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Shi</au><au>Zhao, Yu</au><au>Tang, Biao</au><au>Gao, Daozhou</au><au>Guo, Zihao</au><au>Chong, Marc K.C.</au><au>Musa, Salihu S</au><au>Cai, Yongli</au><au>Wang, Weiming</au><au>He, Daihai</au><au>Wang, Maggie H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shrinkage in serial intervals across transmission generations of COVID-19</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2021-11-21</date><risdate>2021</risdate><volume>529</volume><spage>110861</spage><epage>110861</epage><pages>110861-110861</pages><artnum>110861</artnum><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•One of the key epidemiological factors that shape COVID-19 transmission is serial interval.•We develop a likelihood-based inference framework to model the change in serial interval across transmission generations.•The individual serial interval of COVID-19 shrinks at a factor of 0.72 per generation and 95%CI: (0.54, 0.96).•The shrinkage in serial interval may be an outcome of competition among multiple candidate infectors.
One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34390731</pmid><doi>10.1016/j.jtbi.2021.110861</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3253-654X</orcidid><orcidid>https://orcid.org/0000-0003-3991-569X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2021-11, Vol.529, p.110861-110861, Article 110861 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356772 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Contact Tracing COVID-19 Hong Kong Humans Likelihood Functions SARS-CoV-2 Serial interval Statistical modelling Transmission generation |
title | Shrinkage in serial intervals across transmission generations of COVID-19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shrinkage%20in%20serial%20intervals%20across%20transmission%20generations%20of%20COVID-19&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Zhao,%20Shi&rft.date=2021-11-21&rft.volume=529&rft.spage=110861&rft.epage=110861&rft.pages=110861-110861&rft.artnum=110861&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2021.110861&rft_dat=%3Celsevier_pubme%3ES0022519321002800%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34390731&rft_els_id=S0022519321002800&rfr_iscdi=true |