An AI-enabled lightweight data fusion and load optimization approach for Internet of Things

In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems 2021-09, Vol.122, p.40-51
Hauptverfasser: Jan, Mian Ahmad, Zakarya, Muhammad, Khan, Muhammad, Mastorakis, Spyridon, Menon, Varun G., Balasubramanian, Venki, Rehman, Ateeq Ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 40
container_title Future generation computer systems
container_volume 122
creator Jan, Mian Ahmad
Zakarya, Muhammad
Khan, Muhammad
Mastorakis, Spyridon
Menon, Varun G.
Balasubramanian, Venki
Rehman, Ateeq Ur
description In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications. •A lightweight data fusion approach using stratified sampling.•A dynamic load optimization approach using Evolutionary algorithms to maintain balanced traffic.•A dynamic service migration technique to balance the load across several edge servers that triggers migration decisions.
doi_str_mv 10.1016/j.future.2021.03.020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167739X21001011</els_id><sourcerecordid>2561922033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-5115307104d6c06b45e7504806732f9305a8d2124e1862db348901dfd1a160773</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZeFN0DIRy4JYzuJkwvSqoKyUiUurVSpB8trT3a9ytrBdlrB0zfLlgIXLh7J88_MP_MR8o5ByYA1H_dlP-UpYsmBsxJECRxekAVrJS8kY_VLsphlspCiuz0nr1PaAwCTgr0i56ISnRDQLMjdytPVukCvNwNaOrjtLj_g8aVWZ037KbngqfZzLmhLw5jdwf3U-dfvOMagzY72IdK1zxg9Zhp6er1zfpvekLNeDwnfPsUlufny-fria3H17XJ9sboqTNWIXNSzWQGSQWUbA82mqlHWULXQSMH7TkCtW8sZr5C1DbcbUbUdMNtbplkDUool-XTqO06bA1qDPkc9qDG6g44_VNBO_Zvxbqe24V61om7Y7GFJPjw1iOH7hCmrg0sGh0F7DFNSfJZ1nIMQs7Q6SU0MKUXsn8cwUEcuaq9OXNSRiwKhZi5z2fu_LT4X_QbxZwecD3XvMKpkHHqD1kU0Wdng_j_hEeAyoIU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561922033</pqid></control><display><type>article</type><title>An AI-enabled lightweight data fusion and load optimization approach for Internet of Things</title><source>Elsevier ScienceDirect Journals</source><creator>Jan, Mian Ahmad ; Zakarya, Muhammad ; Khan, Muhammad ; Mastorakis, Spyridon ; Menon, Varun G. ; Balasubramanian, Venki ; Rehman, Ateeq Ur</creator><creatorcontrib>Jan, Mian Ahmad ; Zakarya, Muhammad ; Khan, Muhammad ; Mastorakis, Spyridon ; Menon, Varun G. ; Balasubramanian, Venki ; Rehman, Ateeq Ur</creatorcontrib><description>In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications. •A lightweight data fusion approach using stratified sampling.•A dynamic load optimization approach using Evolutionary algorithms to maintain balanced traffic.•A dynamic service migration technique to balance the load across several edge servers that triggers migration decisions.</description><identifier>ISSN: 0167-739X</identifier><identifier>EISSN: 1872-7115</identifier><identifier>DOI: 10.1016/j.future.2021.03.020</identifier><identifier>PMID: 34393306</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Data fusion ; Evolutionary algorithms ; Gateway-Edge configuration ; Internet of Things ; Load optimization ; Service migration</subject><ispartof>Future generation computer systems, 2021-09, Vol.122, p.40-51</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-5115307104d6c06b45e7504806732f9305a8d2124e1862db348901dfd1a160773</citedby><cites>FETCH-LOGICAL-c463t-5115307104d6c06b45e7504806732f9305a8d2124e1862db348901dfd1a160773</cites><orcidid>0000-0002-3055-9900 ; 0000-0002-5298-1328 ; 0000-0002-8498-4718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.future.2021.03.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34393306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jan, Mian Ahmad</creatorcontrib><creatorcontrib>Zakarya, Muhammad</creatorcontrib><creatorcontrib>Khan, Muhammad</creatorcontrib><creatorcontrib>Mastorakis, Spyridon</creatorcontrib><creatorcontrib>Menon, Varun G.</creatorcontrib><creatorcontrib>Balasubramanian, Venki</creatorcontrib><creatorcontrib>Rehman, Ateeq Ur</creatorcontrib><title>An AI-enabled lightweight data fusion and load optimization approach for Internet of Things</title><title>Future generation computer systems</title><addtitle>Future Gener Comput Syst</addtitle><description>In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications. •A lightweight data fusion approach using stratified sampling.•A dynamic load optimization approach using Evolutionary algorithms to maintain balanced traffic.•A dynamic service migration technique to balance the load across several edge servers that triggers migration decisions.</description><subject>Data fusion</subject><subject>Evolutionary algorithms</subject><subject>Gateway-Edge configuration</subject><subject>Internet of Things</subject><subject>Load optimization</subject><subject>Service migration</subject><issn>0167-739X</issn><issn>1872-7115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi1ERZeFN0DIRy4JYzuJkwvSqoKyUiUurVSpB8trT3a9ytrBdlrB0zfLlgIXLh7J88_MP_MR8o5ByYA1H_dlP-UpYsmBsxJECRxekAVrJS8kY_VLsphlspCiuz0nr1PaAwCTgr0i56ISnRDQLMjdytPVukCvNwNaOrjtLj_g8aVWZ037KbngqfZzLmhLw5jdwf3U-dfvOMagzY72IdK1zxg9Zhp6er1zfpvekLNeDwnfPsUlufny-fria3H17XJ9sboqTNWIXNSzWQGSQWUbA82mqlHWULXQSMH7TkCtW8sZr5C1DbcbUbUdMNtbplkDUool-XTqO06bA1qDPkc9qDG6g44_VNBO_Zvxbqe24V61om7Y7GFJPjw1iOH7hCmrg0sGh0F7DFNSfJZ1nIMQs7Q6SU0MKUXsn8cwUEcuaq9OXNSRiwKhZi5z2fu_LT4X_QbxZwecD3XvMKpkHHqD1kU0Wdng_j_hEeAyoIU</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Jan, Mian Ahmad</creator><creator>Zakarya, Muhammad</creator><creator>Khan, Muhammad</creator><creator>Mastorakis, Spyridon</creator><creator>Menon, Varun G.</creator><creator>Balasubramanian, Venki</creator><creator>Rehman, Ateeq Ur</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3055-9900</orcidid><orcidid>https://orcid.org/0000-0002-5298-1328</orcidid><orcidid>https://orcid.org/0000-0002-8498-4718</orcidid></search><sort><creationdate>20210901</creationdate><title>An AI-enabled lightweight data fusion and load optimization approach for Internet of Things</title><author>Jan, Mian Ahmad ; Zakarya, Muhammad ; Khan, Muhammad ; Mastorakis, Spyridon ; Menon, Varun G. ; Balasubramanian, Venki ; Rehman, Ateeq Ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-5115307104d6c06b45e7504806732f9305a8d2124e1862db348901dfd1a160773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data fusion</topic><topic>Evolutionary algorithms</topic><topic>Gateway-Edge configuration</topic><topic>Internet of Things</topic><topic>Load optimization</topic><topic>Service migration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jan, Mian Ahmad</creatorcontrib><creatorcontrib>Zakarya, Muhammad</creatorcontrib><creatorcontrib>Khan, Muhammad</creatorcontrib><creatorcontrib>Mastorakis, Spyridon</creatorcontrib><creatorcontrib>Menon, Varun G.</creatorcontrib><creatorcontrib>Balasubramanian, Venki</creatorcontrib><creatorcontrib>Rehman, Ateeq Ur</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Future generation computer systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jan, Mian Ahmad</au><au>Zakarya, Muhammad</au><au>Khan, Muhammad</au><au>Mastorakis, Spyridon</au><au>Menon, Varun G.</au><au>Balasubramanian, Venki</au><au>Rehman, Ateeq Ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An AI-enabled lightweight data fusion and load optimization approach for Internet of Things</atitle><jtitle>Future generation computer systems</jtitle><addtitle>Future Gener Comput Syst</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>122</volume><spage>40</spage><epage>51</epage><pages>40-51</pages><issn>0167-739X</issn><eissn>1872-7115</eissn><abstract>In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications. •A lightweight data fusion approach using stratified sampling.•A dynamic load optimization approach using Evolutionary algorithms to maintain balanced traffic.•A dynamic service migration technique to balance the load across several edge servers that triggers migration decisions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>34393306</pmid><doi>10.1016/j.future.2021.03.020</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3055-9900</orcidid><orcidid>https://orcid.org/0000-0002-5298-1328</orcidid><orcidid>https://orcid.org/0000-0002-8498-4718</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-739X
ispartof Future generation computer systems, 2021-09, Vol.122, p.40-51
issn 0167-739X
1872-7115
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356146
source Elsevier ScienceDirect Journals
subjects Data fusion
Evolutionary algorithms
Gateway-Edge configuration
Internet of Things
Load optimization
Service migration
title An AI-enabled lightweight data fusion and load optimization approach for Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20AI-enabled%20lightweight%20data%20fusion%20and%20load%20optimization%20approach%20for%20Internet%20of%20Things&rft.jtitle=Future%20generation%20computer%20systems&rft.au=Jan,%20Mian%20Ahmad&rft.date=2021-09-01&rft.volume=122&rft.spage=40&rft.epage=51&rft.pages=40-51&rft.issn=0167-739X&rft.eissn=1872-7115&rft_id=info:doi/10.1016/j.future.2021.03.020&rft_dat=%3Cproquest_pubme%3E2561922033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561922033&rft_id=info:pmid/34393306&rft_els_id=S0167739X21001011&rfr_iscdi=true