Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms

Train and apply natural language processing (NLP) algorithms for automated radiology-arthroscopy correlation of meniscal tears. In this retrospective single-institution study, we trained supervised machine learning models (logistic regression, support vector machine, and random forest) to detect med...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2022-04, Vol.29 (4), p.479-487
Hauptverfasser: Li, Matthew D., Deng, Francis, Chang, Ken, Kalpathy-Cramer, Jayashree, Huang, Ambrose J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 4
container_start_page 479
container_title Academic radiology
container_volume 29
creator Li, Matthew D.
Deng, Francis
Chang, Ken
Kalpathy-Cramer, Jayashree
Huang, Ambrose J.
description Train and apply natural language processing (NLP) algorithms for automated radiology-arthroscopy correlation of meniscal tears. In this retrospective single-institution study, we trained supervised machine learning models (logistic regression, support vector machine, and random forest) to detect medial or lateral meniscus tears on free-text MRI reports. We trained and evaluated model performances with cross-validation using 3593 manually annotated knee MRI reports. To assess radiology-arthroscopy correlation, we then randomly partitioned this dataset 80:20 for training and testing, where 108 test set MRIs were followed by knee arthroscopy within 1 year. These free-text arthroscopy reports were also manually annotated. The NLP algorithms trained on the knee MRI training dataset were then evaluated on the MRI and arthroscopy report test datasets. We assessed radiology-arthroscopy agreement using the ensembled NLP-extracted findings versus manually annotated findings. The NLP models showed high cross-validation performance for meniscal tear detection on knee MRI reports (medial meniscus F1 scores 0.93–0.94, lateral meniscus F1 scores 0.86–0.88). When these algorithms were evaluated on arthroscopy reports, despite never training on arthroscopy reports, performance was similar, though higher with model ensembling (medial meniscus F1 score 0.97, lateral meniscus F1 score 0.99). However, ensembling did not improve performance on knee MRI reports. In the radiology-arthroscopy test set, the ensembled NLP models were able to detect mismatches between MRI and arthroscopy reports with sensitivity 79% and specificity 87%. Radiology-arthroscopy correlation can be automated for knee meniscal tears using NLP algorithms, which shows promise for education and quality improvement.
doi_str_mv 10.1016/j.acra.2021.01.017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8355247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S107663322100026X</els_id><sourcerecordid>2489598996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-ced96c9be5313c6791003368816cbd4f0d5107683c520308de01e416756cc6e33</originalsourceid><addsrcrecordid>eNp9UcFq3DAQFaGlSdP-QA5Bx168lSxLlqEUliVpS7dJKMlZaOVZrxZb2kpyYP8-cjYJyaUwoEHz5s3MewidUTKjhIqv25k2Qc9KUtIZmaI-QidU1rKoSCXe5ZzUohCMlcfoY4xbQigXkn1Ax4xxyWrKTpCfj8kPOkGL_-rW-t53-2Ie0ib4aPxujxc-BOh1st5hv8a_HQD-A85Go3t8CzpEfBet6_CVTmPIf0vtulF3gG-CNxAfa_O-88GmzRA_ofdr3Uf4_PSeorvLi9vFz2J5_ePXYr4sTMV5Kgy0jTDNCjijzIi6oYQwJqSkwqzaak1aPh0nmeElYUS2QChUVNRcGCOAsVP0_cC7G1cDtAZcysupXbCDDnvltVVvK85uVOfvlWScl1WdCb48EQT_b4SY1JBvhr7XDvwYVVnJhjeyaUSGlgeoyaLFAOuXMZSoySm1VZNTanJKkSkm_vPXC760PFuTAd8OAMgy3VsIKhoLLitjA5ikWm__x_8AKtmmwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489598996</pqid></control><display><type>article</type><title>Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Matthew D. ; Deng, Francis ; Chang, Ken ; Kalpathy-Cramer, Jayashree ; Huang, Ambrose J.</creator><creatorcontrib>Li, Matthew D. ; Deng, Francis ; Chang, Ken ; Kalpathy-Cramer, Jayashree ; Huang, Ambrose J.</creatorcontrib><description>Train and apply natural language processing (NLP) algorithms for automated radiology-arthroscopy correlation of meniscal tears. In this retrospective single-institution study, we trained supervised machine learning models (logistic regression, support vector machine, and random forest) to detect medial or lateral meniscus tears on free-text MRI reports. We trained and evaluated model performances with cross-validation using 3593 manually annotated knee MRI reports. To assess radiology-arthroscopy correlation, we then randomly partitioned this dataset 80:20 for training and testing, where 108 test set MRIs were followed by knee arthroscopy within 1 year. These free-text arthroscopy reports were also manually annotated. The NLP algorithms trained on the knee MRI training dataset were then evaluated on the MRI and arthroscopy report test datasets. We assessed radiology-arthroscopy agreement using the ensembled NLP-extracted findings versus manually annotated findings. The NLP models showed high cross-validation performance for meniscal tear detection on knee MRI reports (medial meniscus F1 scores 0.93–0.94, lateral meniscus F1 scores 0.86–0.88). When these algorithms were evaluated on arthroscopy reports, despite never training on arthroscopy reports, performance was similar, though higher with model ensembling (medial meniscus F1 score 0.97, lateral meniscus F1 score 0.99). However, ensembling did not improve performance on knee MRI reports. In the radiology-arthroscopy test set, the ensembled NLP models were able to detect mismatches between MRI and arthroscopy reports with sensitivity 79% and specificity 87%. Radiology-arthroscopy correlation can be automated for knee meniscal tears using NLP algorithms, which shows promise for education and quality improvement.</description><identifier>ISSN: 1076-6332</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2021.01.017</identifier><identifier>PMID: 33583713</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arthroscopy ; Humans ; Knee MRI ; Machine learning ; Magnetic Resonance Imaging ; Meniscal tear ; Natural Language Processing ; Radiology ; Radiology-arthroscopy correlation ; Retrospective Studies ; Sensitivity and Specificity ; Support Vector Machine ; Tibial Meniscus Injuries - diagnostic imaging</subject><ispartof>Academic radiology, 2022-04, Vol.29 (4), p.479-487</ispartof><rights>2021 The Association of University Radiologists</rights><rights>Copyright © 2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-ced96c9be5313c6791003368816cbd4f0d5107683c520308de01e416756cc6e33</citedby><cites>FETCH-LOGICAL-c455t-ced96c9be5313c6791003368816cbd4f0d5107683c520308de01e416756cc6e33</cites><orcidid>0000-0002-6207-4940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.acra.2021.01.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33583713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Matthew D.</creatorcontrib><creatorcontrib>Deng, Francis</creatorcontrib><creatorcontrib>Chang, Ken</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Huang, Ambrose J.</creatorcontrib><title>Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>Train and apply natural language processing (NLP) algorithms for automated radiology-arthroscopy correlation of meniscal tears. In this retrospective single-institution study, we trained supervised machine learning models (logistic regression, support vector machine, and random forest) to detect medial or lateral meniscus tears on free-text MRI reports. We trained and evaluated model performances with cross-validation using 3593 manually annotated knee MRI reports. To assess radiology-arthroscopy correlation, we then randomly partitioned this dataset 80:20 for training and testing, where 108 test set MRIs were followed by knee arthroscopy within 1 year. These free-text arthroscopy reports were also manually annotated. The NLP algorithms trained on the knee MRI training dataset were then evaluated on the MRI and arthroscopy report test datasets. We assessed radiology-arthroscopy agreement using the ensembled NLP-extracted findings versus manually annotated findings. The NLP models showed high cross-validation performance for meniscal tear detection on knee MRI reports (medial meniscus F1 scores 0.93–0.94, lateral meniscus F1 scores 0.86–0.88). When these algorithms were evaluated on arthroscopy reports, despite never training on arthroscopy reports, performance was similar, though higher with model ensembling (medial meniscus F1 score 0.97, lateral meniscus F1 score 0.99). However, ensembling did not improve performance on knee MRI reports. In the radiology-arthroscopy test set, the ensembled NLP models were able to detect mismatches between MRI and arthroscopy reports with sensitivity 79% and specificity 87%. Radiology-arthroscopy correlation can be automated for knee meniscal tears using NLP algorithms, which shows promise for education and quality improvement.</description><subject>Arthroscopy</subject><subject>Humans</subject><subject>Knee MRI</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging</subject><subject>Meniscal tear</subject><subject>Natural Language Processing</subject><subject>Radiology</subject><subject>Radiology-arthroscopy correlation</subject><subject>Retrospective Studies</subject><subject>Sensitivity and Specificity</subject><subject>Support Vector Machine</subject><subject>Tibial Meniscus Injuries - diagnostic imaging</subject><issn>1076-6332</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFq3DAQFaGlSdP-QA5Bx168lSxLlqEUliVpS7dJKMlZaOVZrxZb2kpyYP8-cjYJyaUwoEHz5s3MewidUTKjhIqv25k2Qc9KUtIZmaI-QidU1rKoSCXe5ZzUohCMlcfoY4xbQigXkn1Ax4xxyWrKTpCfj8kPOkGL_-rW-t53-2Ie0ib4aPxujxc-BOh1st5hv8a_HQD-A85Go3t8CzpEfBet6_CVTmPIf0vtulF3gG-CNxAfa_O-88GmzRA_ofdr3Uf4_PSeorvLi9vFz2J5_ePXYr4sTMV5Kgy0jTDNCjijzIi6oYQwJqSkwqzaak1aPh0nmeElYUS2QChUVNRcGCOAsVP0_cC7G1cDtAZcysupXbCDDnvltVVvK85uVOfvlWScl1WdCb48EQT_b4SY1JBvhr7XDvwYVVnJhjeyaUSGlgeoyaLFAOuXMZSoySm1VZNTanJKkSkm_vPXC760PFuTAd8OAMgy3VsIKhoLLitjA5ikWm__x_8AKtmmwA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Li, Matthew D.</creator><creator>Deng, Francis</creator><creator>Chang, Ken</creator><creator>Kalpathy-Cramer, Jayashree</creator><creator>Huang, Ambrose J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6207-4940</orcidid></search><sort><creationdate>20220401</creationdate><title>Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms</title><author>Li, Matthew D. ; Deng, Francis ; Chang, Ken ; Kalpathy-Cramer, Jayashree ; Huang, Ambrose J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-ced96c9be5313c6791003368816cbd4f0d5107683c520308de01e416756cc6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arthroscopy</topic><topic>Humans</topic><topic>Knee MRI</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging</topic><topic>Meniscal tear</topic><topic>Natural Language Processing</topic><topic>Radiology</topic><topic>Radiology-arthroscopy correlation</topic><topic>Retrospective Studies</topic><topic>Sensitivity and Specificity</topic><topic>Support Vector Machine</topic><topic>Tibial Meniscus Injuries - diagnostic imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Matthew D.</creatorcontrib><creatorcontrib>Deng, Francis</creatorcontrib><creatorcontrib>Chang, Ken</creatorcontrib><creatorcontrib>Kalpathy-Cramer, Jayashree</creatorcontrib><creatorcontrib>Huang, Ambrose J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Matthew D.</au><au>Deng, Francis</au><au>Chang, Ken</au><au>Kalpathy-Cramer, Jayashree</au><au>Huang, Ambrose J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>29</volume><issue>4</issue><spage>479</spage><epage>487</epage><pages>479-487</pages><issn>1076-6332</issn><eissn>1878-4046</eissn><abstract>Train and apply natural language processing (NLP) algorithms for automated radiology-arthroscopy correlation of meniscal tears. In this retrospective single-institution study, we trained supervised machine learning models (logistic regression, support vector machine, and random forest) to detect medial or lateral meniscus tears on free-text MRI reports. We trained and evaluated model performances with cross-validation using 3593 manually annotated knee MRI reports. To assess radiology-arthroscopy correlation, we then randomly partitioned this dataset 80:20 for training and testing, where 108 test set MRIs were followed by knee arthroscopy within 1 year. These free-text arthroscopy reports were also manually annotated. The NLP algorithms trained on the knee MRI training dataset were then evaluated on the MRI and arthroscopy report test datasets. We assessed radiology-arthroscopy agreement using the ensembled NLP-extracted findings versus manually annotated findings. The NLP models showed high cross-validation performance for meniscal tear detection on knee MRI reports (medial meniscus F1 scores 0.93–0.94, lateral meniscus F1 scores 0.86–0.88). When these algorithms were evaluated on arthroscopy reports, despite never training on arthroscopy reports, performance was similar, though higher with model ensembling (medial meniscus F1 score 0.97, lateral meniscus F1 score 0.99). However, ensembling did not improve performance on knee MRI reports. In the radiology-arthroscopy test set, the ensembled NLP models were able to detect mismatches between MRI and arthroscopy reports with sensitivity 79% and specificity 87%. Radiology-arthroscopy correlation can be automated for knee meniscal tears using NLP algorithms, which shows promise for education and quality improvement.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33583713</pmid><doi>10.1016/j.acra.2021.01.017</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6207-4940</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-6332
ispartof Academic radiology, 2022-04, Vol.29 (4), p.479-487
issn 1076-6332
1878-4046
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8355247
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Arthroscopy
Humans
Knee MRI
Machine learning
Magnetic Resonance Imaging
Meniscal tear
Natural Language Processing
Radiology
Radiology-arthroscopy correlation
Retrospective Studies
Sensitivity and Specificity
Support Vector Machine
Tibial Meniscus Injuries - diagnostic imaging
title Automated Radiology-Arthroscopy Correlation of Knee Meniscal Tears Using Natural Language Processing Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Radiology-Arthroscopy%20Correlation%20of%20Knee%20Meniscal%20Tears%20Using%20Natural%20Language%20Processing%20Algorithms&rft.jtitle=Academic%20radiology&rft.au=Li,%20Matthew%20D.&rft.date=2022-04-01&rft.volume=29&rft.issue=4&rft.spage=479&rft.epage=487&rft.pages=479-487&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2021.01.017&rft_dat=%3Cproquest_pubme%3E2489598996%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489598996&rft_id=info:pmid/33583713&rft_els_id=S107663322100026X&rfr_iscdi=true