Dense neuronal reconstruction through X-ray holographic nano-tomography

Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image mill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2020-12, Vol.23 (12), p.1637-1643
Hauptverfasser: Kuan, Aaron T., Phelps, Jasper S., Thomas, Logan A., Nguyen, Tri M., Han, Julie, Chen, Chiao-Lin, Azevedo, Anthony W., Tuthill, John C., Funke, Jan, Cloetens, Peter, Pacureanu, Alexandra, Lee, Wei-Chung Allen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery. Kuan, Phelps, et al. used synchrotron X-ray imaging and deep learning to map dense neuronal wiring in fly and mouse tissue, enabling examination of individual cells and connectivity in circuits governing motor control and perceptual decision-making.
ISSN:1097-6256
1546-1726
DOI:10.1038/s41593-020-0704-9