Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart

Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heart rhythm 2021-08, Vol.18 (8), p.1406-1413
Hauptverfasser: Orini, Michele, Taggart, Peter, Bhuva, Anish, Roberts, Neil, Di Salvo, Carmelo, Yates, Martin, Badiani, Sveeta, Van Duijvenboden, Stefan, Lloyd, Guy, Smith, Andrew, Lambiase, Pier D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1413
container_issue 8
container_start_page 1406
container_title Heart rhythm
container_volume 18
creator Orini, Michele
Taggart, Peter
Bhuva, Anish
Roberts, Neil
Di Salvo, Carmelo
Yates, Martin
Badiani, Sveeta
Van Duijvenboden, Stefan
Lloyd, Guy
Smith, Andrew
Lambiase, Pier D.
description Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear. The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology. In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models. Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01). Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias. [Display omitted]
doi_str_mv 10.1016/j.hrthm.2021.04.026
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8353585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1547527121004057</els_id><sourcerecordid>2520850290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEoqXwBEjISzYJ_k2cBUio_EqVuilra2JPbnxJ7GLnXom36bPwZPXtLRXdsBpbPufMeL6qes1owyhr322bKa3T0nDKWUNlQ3n7pDplSrW10B17ejjLrla8YyfVi5y3lPK-peJ5dSJEL7jS-rRyn3xCuxIf_tzs_T4SyBlzXjCsJI5kM8cBZgLBkYQbH0O5LGgnCBHn4kvekhHRDWB_lgyyTljKCiVx2i0QyISQ1pfVsxHmjK_u61n148vnq_Nv9cXl1-_nHy9qK1W_1o4x0FoOUkmmdWeV4CNvUbS8p3Tsea86joOTUmvegmVuHJzWoBA7YBaUOKs-HHOvd8OCzpZPJJjNdfILpN8mgjePX4KfzCbujRZKKH0IeHsfkOKvHebVLD5bnGcIGHfZcMWpVmWNtEjFUWpTzDnh-NCGUXPgY7bmjo858DFUmsKnuN78O-GD5y-QInh_FGDZ095jMtl6DBbdHSfjov9vg1sKPKVb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520850290</pqid></control><display><type>article</type><title>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Orini, Michele ; Taggart, Peter ; Bhuva, Anish ; Roberts, Neil ; Di Salvo, Carmelo ; Yates, Martin ; Badiani, Sveeta ; Van Duijvenboden, Stefan ; Lloyd, Guy ; Smith, Andrew ; Lambiase, Pier D.</creator><creatorcontrib>Orini, Michele ; Taggart, Peter ; Bhuva, Anish ; Roberts, Neil ; Di Salvo, Carmelo ; Yates, Martin ; Badiani, Sveeta ; Van Duijvenboden, Stefan ; Lloyd, Guy ; Smith, Andrew ; Lambiase, Pier D.</creatorcontrib><description>Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear. The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology. In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models. Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01). Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias. [Display omitted]</description><identifier>ISSN: 1547-5271</identifier><identifier>EISSN: 1556-3871</identifier><identifier>DOI: 10.1016/j.hrthm.2021.04.026</identifier><identifier>PMID: 33932588</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Arrhythmia ; Arrhythmias, Cardiac - diagnosis ; Arrhythmias, Cardiac - physiopathology ; Cardiac strain ; Echocardiography ; Electrocardiography ; Electromechanical coupling ; Experimental ; Feedback ; Female ; Heart Conduction System - physiopathology ; Heart Ventricles - diagnostic imaging ; Heart Ventricles - physiopathology ; Humans ; Male ; Mechanoelectric feedback ; Middle Aged ; Myocardial Contraction - physiology ; Repolarization</subject><ispartof>Heart rhythm, 2021-08, Vol.18 (8), p.1406-1413</ispartof><rights>2021 Heart Rhythm Society</rights><rights>Copyright © 2021 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 Heart Rhythm Society. 2021 Heart Rhythm Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</citedby><cites>FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</cites><orcidid>0000-0001-5773-0344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.hrthm.2021.04.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33932588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orini, Michele</creatorcontrib><creatorcontrib>Taggart, Peter</creatorcontrib><creatorcontrib>Bhuva, Anish</creatorcontrib><creatorcontrib>Roberts, Neil</creatorcontrib><creatorcontrib>Di Salvo, Carmelo</creatorcontrib><creatorcontrib>Yates, Martin</creatorcontrib><creatorcontrib>Badiani, Sveeta</creatorcontrib><creatorcontrib>Van Duijvenboden, Stefan</creatorcontrib><creatorcontrib>Lloyd, Guy</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Lambiase, Pier D.</creatorcontrib><title>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</title><title>Heart rhythm</title><addtitle>Heart Rhythm</addtitle><description>Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear. The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology. In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models. Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01). Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias. [Display omitted]</description><subject>Aged</subject><subject>Arrhythmia</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Cardiac strain</subject><subject>Echocardiography</subject><subject>Electrocardiography</subject><subject>Electromechanical coupling</subject><subject>Experimental</subject><subject>Feedback</subject><subject>Female</subject><subject>Heart Conduction System - physiopathology</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Mechanoelectric feedback</subject><subject>Middle Aged</subject><subject>Myocardial Contraction - physiology</subject><subject>Repolarization</subject><issn>1547-5271</issn><issn>1556-3871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhSMEoqXwBEjISzYJ_k2cBUio_EqVuilra2JPbnxJ7GLnXom36bPwZPXtLRXdsBpbPufMeL6qes1owyhr322bKa3T0nDKWUNlQ3n7pDplSrW10B17ejjLrla8YyfVi5y3lPK-peJ5dSJEL7jS-rRyn3xCuxIf_tzs_T4SyBlzXjCsJI5kM8cBZgLBkYQbH0O5LGgnCBHn4kvekhHRDWB_lgyyTljKCiVx2i0QyISQ1pfVsxHmjK_u61n148vnq_Nv9cXl1-_nHy9qK1W_1o4x0FoOUkmmdWeV4CNvUbS8p3Tsea86joOTUmvegmVuHJzWoBA7YBaUOKs-HHOvd8OCzpZPJJjNdfILpN8mgjePX4KfzCbujRZKKH0IeHsfkOKvHebVLD5bnGcIGHfZcMWpVmWNtEjFUWpTzDnh-NCGUXPgY7bmjo858DFUmsKnuN78O-GD5y-QInh_FGDZ095jMtl6DBbdHSfjov9vg1sKPKVb</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Orini, Michele</creator><creator>Taggart, Peter</creator><creator>Bhuva, Anish</creator><creator>Roberts, Neil</creator><creator>Di Salvo, Carmelo</creator><creator>Yates, Martin</creator><creator>Badiani, Sveeta</creator><creator>Van Duijvenboden, Stefan</creator><creator>Lloyd, Guy</creator><creator>Smith, Andrew</creator><creator>Lambiase, Pier D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5773-0344</orcidid></search><sort><creationdate>202108</creationdate><title>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</title><author>Orini, Michele ; Taggart, Peter ; Bhuva, Anish ; Roberts, Neil ; Di Salvo, Carmelo ; Yates, Martin ; Badiani, Sveeta ; Van Duijvenboden, Stefan ; Lloyd, Guy ; Smith, Andrew ; Lambiase, Pier D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Arrhythmia</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Cardiac strain</topic><topic>Echocardiography</topic><topic>Electrocardiography</topic><topic>Electromechanical coupling</topic><topic>Experimental</topic><topic>Feedback</topic><topic>Female</topic><topic>Heart Conduction System - physiopathology</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Mechanoelectric feedback</topic><topic>Middle Aged</topic><topic>Myocardial Contraction - physiology</topic><topic>Repolarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orini, Michele</creatorcontrib><creatorcontrib>Taggart, Peter</creatorcontrib><creatorcontrib>Bhuva, Anish</creatorcontrib><creatorcontrib>Roberts, Neil</creatorcontrib><creatorcontrib>Di Salvo, Carmelo</creatorcontrib><creatorcontrib>Yates, Martin</creatorcontrib><creatorcontrib>Badiani, Sveeta</creatorcontrib><creatorcontrib>Van Duijvenboden, Stefan</creatorcontrib><creatorcontrib>Lloyd, Guy</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Lambiase, Pier D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heart rhythm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orini, Michele</au><au>Taggart, Peter</au><au>Bhuva, Anish</au><au>Roberts, Neil</au><au>Di Salvo, Carmelo</au><au>Yates, Martin</au><au>Badiani, Sveeta</au><au>Van Duijvenboden, Stefan</au><au>Lloyd, Guy</au><au>Smith, Andrew</au><au>Lambiase, Pier D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</atitle><jtitle>Heart rhythm</jtitle><addtitle>Heart Rhythm</addtitle><date>2021-08</date><risdate>2021</risdate><volume>18</volume><issue>8</issue><spage>1406</spage><epage>1413</epage><pages>1406-1413</pages><issn>1547-5271</issn><eissn>1556-3871</eissn><abstract>Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear. The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology. In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models. Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01). Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33932588</pmid><doi>10.1016/j.hrthm.2021.04.026</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5773-0344</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1547-5271
ispartof Heart rhythm, 2021-08, Vol.18 (8), p.1406-1413
issn 1547-5271
1556-3871
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8353585
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Aged
Arrhythmia
Arrhythmias, Cardiac - diagnosis
Arrhythmias, Cardiac - physiopathology
Cardiac strain
Echocardiography
Electrocardiography
Electromechanical coupling
Experimental
Feedback
Female
Heart Conduction System - physiopathology
Heart Ventricles - diagnostic imaging
Heart Ventricles - physiopathology
Humans
Male
Mechanoelectric feedback
Middle Aged
Myocardial Contraction - physiology
Repolarization
title Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20in%C2%A0vivo%20assessment%20of%20global%20and%20regional%20mechanoelectric%20feedback%20in%20the%20intact%20human%20heart&rft.jtitle=Heart%20rhythm&rft.au=Orini,%20Michele&rft.date=2021-08&rft.volume=18&rft.issue=8&rft.spage=1406&rft.epage=1413&rft.pages=1406-1413&rft.issn=1547-5271&rft.eissn=1556-3871&rft_id=info:doi/10.1016/j.hrthm.2021.04.026&rft_dat=%3Cproquest_pubme%3E2520850290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520850290&rft_id=info:pmid/33932588&rft_els_id=S1547527121004057&rfr_iscdi=true