Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart
Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies,...
Gespeichert in:
Veröffentlicht in: | Heart rhythm 2021-08, Vol.18 (8), p.1406-1413 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1413 |
---|---|
container_issue | 8 |
container_start_page | 1406 |
container_title | Heart rhythm |
container_volume | 18 |
creator | Orini, Michele Taggart, Peter Bhuva, Anish Roberts, Neil Di Salvo, Carmelo Yates, Martin Badiani, Sveeta Van Duijvenboden, Stefan Lloyd, Guy Smith, Andrew Lambiase, Pier D. |
description | Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear.
The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology.
In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models.
Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01).
Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias.
[Display omitted] |
doi_str_mv | 10.1016/j.hrthm.2021.04.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8353585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1547527121004057</els_id><sourcerecordid>2520850290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSMEoqXwBEjISzYJ_k2cBUio_EqVuilra2JPbnxJ7GLnXom36bPwZPXtLRXdsBpbPufMeL6qes1owyhr322bKa3T0nDKWUNlQ3n7pDplSrW10B17ejjLrla8YyfVi5y3lPK-peJ5dSJEL7jS-rRyn3xCuxIf_tzs_T4SyBlzXjCsJI5kM8cBZgLBkYQbH0O5LGgnCBHn4kvekhHRDWB_lgyyTljKCiVx2i0QyISQ1pfVsxHmjK_u61n148vnq_Nv9cXl1-_nHy9qK1W_1o4x0FoOUkmmdWeV4CNvUbS8p3Tsea86joOTUmvegmVuHJzWoBA7YBaUOKs-HHOvd8OCzpZPJJjNdfILpN8mgjePX4KfzCbujRZKKH0IeHsfkOKvHebVLD5bnGcIGHfZcMWpVmWNtEjFUWpTzDnh-NCGUXPgY7bmjo858DFUmsKnuN78O-GD5y-QInh_FGDZ095jMtl6DBbdHSfjov9vg1sKPKVb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2520850290</pqid></control><display><type>article</type><title>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Orini, Michele ; Taggart, Peter ; Bhuva, Anish ; Roberts, Neil ; Di Salvo, Carmelo ; Yates, Martin ; Badiani, Sveeta ; Van Duijvenboden, Stefan ; Lloyd, Guy ; Smith, Andrew ; Lambiase, Pier D.</creator><creatorcontrib>Orini, Michele ; Taggart, Peter ; Bhuva, Anish ; Roberts, Neil ; Di Salvo, Carmelo ; Yates, Martin ; Badiani, Sveeta ; Van Duijvenboden, Stefan ; Lloyd, Guy ; Smith, Andrew ; Lambiase, Pier D.</creatorcontrib><description>Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear.
The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology.
In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models.
Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01).
Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias.
[Display omitted]</description><identifier>ISSN: 1547-5271</identifier><identifier>EISSN: 1556-3871</identifier><identifier>DOI: 10.1016/j.hrthm.2021.04.026</identifier><identifier>PMID: 33932588</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Arrhythmia ; Arrhythmias, Cardiac - diagnosis ; Arrhythmias, Cardiac - physiopathology ; Cardiac strain ; Echocardiography ; Electrocardiography ; Electromechanical coupling ; Experimental ; Feedback ; Female ; Heart Conduction System - physiopathology ; Heart Ventricles - diagnostic imaging ; Heart Ventricles - physiopathology ; Humans ; Male ; Mechanoelectric feedback ; Middle Aged ; Myocardial Contraction - physiology ; Repolarization</subject><ispartof>Heart rhythm, 2021-08, Vol.18 (8), p.1406-1413</ispartof><rights>2021 Heart Rhythm Society</rights><rights>Copyright © 2021 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 Heart Rhythm Society. 2021 Heart Rhythm Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</citedby><cites>FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</cites><orcidid>0000-0001-5773-0344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.hrthm.2021.04.026$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33932588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orini, Michele</creatorcontrib><creatorcontrib>Taggart, Peter</creatorcontrib><creatorcontrib>Bhuva, Anish</creatorcontrib><creatorcontrib>Roberts, Neil</creatorcontrib><creatorcontrib>Di Salvo, Carmelo</creatorcontrib><creatorcontrib>Yates, Martin</creatorcontrib><creatorcontrib>Badiani, Sveeta</creatorcontrib><creatorcontrib>Van Duijvenboden, Stefan</creatorcontrib><creatorcontrib>Lloyd, Guy</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Lambiase, Pier D.</creatorcontrib><title>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</title><title>Heart rhythm</title><addtitle>Heart Rhythm</addtitle><description>Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear.
The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology.
In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models.
Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01).
Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias.
[Display omitted]</description><subject>Aged</subject><subject>Arrhythmia</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Cardiac strain</subject><subject>Echocardiography</subject><subject>Electrocardiography</subject><subject>Electromechanical coupling</subject><subject>Experimental</subject><subject>Feedback</subject><subject>Female</subject><subject>Heart Conduction System - physiopathology</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>Heart Ventricles - physiopathology</subject><subject>Humans</subject><subject>Male</subject><subject>Mechanoelectric feedback</subject><subject>Middle Aged</subject><subject>Myocardial Contraction - physiology</subject><subject>Repolarization</subject><issn>1547-5271</issn><issn>1556-3871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhSMEoqXwBEjISzYJ_k2cBUio_EqVuilra2JPbnxJ7GLnXom36bPwZPXtLRXdsBpbPufMeL6qes1owyhr322bKa3T0nDKWUNlQ3n7pDplSrW10B17ejjLrla8YyfVi5y3lPK-peJ5dSJEL7jS-rRyn3xCuxIf_tzs_T4SyBlzXjCsJI5kM8cBZgLBkYQbH0O5LGgnCBHn4kvekhHRDWB_lgyyTljKCiVx2i0QyISQ1pfVsxHmjK_u61n148vnq_Nv9cXl1-_nHy9qK1W_1o4x0FoOUkmmdWeV4CNvUbS8p3Tsea86joOTUmvegmVuHJzWoBA7YBaUOKs-HHOvd8OCzpZPJJjNdfILpN8mgjePX4KfzCbujRZKKH0IeHsfkOKvHebVLD5bnGcIGHfZcMWpVmWNtEjFUWpTzDnh-NCGUXPgY7bmjo858DFUmsKnuN78O-GD5y-QInh_FGDZ095jMtl6DBbdHSfjov9vg1sKPKVb</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Orini, Michele</creator><creator>Taggart, Peter</creator><creator>Bhuva, Anish</creator><creator>Roberts, Neil</creator><creator>Di Salvo, Carmelo</creator><creator>Yates, Martin</creator><creator>Badiani, Sveeta</creator><creator>Van Duijvenboden, Stefan</creator><creator>Lloyd, Guy</creator><creator>Smith, Andrew</creator><creator>Lambiase, Pier D.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5773-0344</orcidid></search><sort><creationdate>202108</creationdate><title>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</title><author>Orini, Michele ; Taggart, Peter ; Bhuva, Anish ; Roberts, Neil ; Di Salvo, Carmelo ; Yates, Martin ; Badiani, Sveeta ; Van Duijvenboden, Stefan ; Lloyd, Guy ; Smith, Andrew ; Lambiase, Pier D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d11a884b4541887c532f26e362900f929572ebd448826ac1dfbd88a5ee7a1ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Arrhythmia</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Cardiac strain</topic><topic>Echocardiography</topic><topic>Electrocardiography</topic><topic>Electromechanical coupling</topic><topic>Experimental</topic><topic>Feedback</topic><topic>Female</topic><topic>Heart Conduction System - physiopathology</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>Heart Ventricles - physiopathology</topic><topic>Humans</topic><topic>Male</topic><topic>Mechanoelectric feedback</topic><topic>Middle Aged</topic><topic>Myocardial Contraction - physiology</topic><topic>Repolarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orini, Michele</creatorcontrib><creatorcontrib>Taggart, Peter</creatorcontrib><creatorcontrib>Bhuva, Anish</creatorcontrib><creatorcontrib>Roberts, Neil</creatorcontrib><creatorcontrib>Di Salvo, Carmelo</creatorcontrib><creatorcontrib>Yates, Martin</creatorcontrib><creatorcontrib>Badiani, Sveeta</creatorcontrib><creatorcontrib>Van Duijvenboden, Stefan</creatorcontrib><creatorcontrib>Lloyd, Guy</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Lambiase, Pier D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Heart rhythm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orini, Michele</au><au>Taggart, Peter</au><au>Bhuva, Anish</au><au>Roberts, Neil</au><au>Di Salvo, Carmelo</au><au>Yates, Martin</au><au>Badiani, Sveeta</au><au>Van Duijvenboden, Stefan</au><au>Lloyd, Guy</au><au>Smith, Andrew</au><au>Lambiase, Pier D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart</atitle><jtitle>Heart rhythm</jtitle><addtitle>Heart Rhythm</addtitle><date>2021-08</date><risdate>2021</risdate><volume>18</volume><issue>8</issue><spage>1406</spage><epage>1413</epage><pages>1406-1413</pages><issn>1547-5271</issn><eissn>1556-3871</eissn><abstract>Inhomogeneity of ventricular contraction is associated with sudden cardiac death, but the underlying mechanisms are unclear. Alterations in cardiac contraction impact electrophysiological parameters through mechanoelectric feedback. This has been shown to promote arrhythmias in experimental studies, but its effect in the in vivo human heart is unclear.
The purpose of this study was to quantify the impact of regional myocardial deformation provoked by a sudden increase in ventricular loading (aortic occlusion) on human cardiac electrophysiology.
In 10 patients undergoing open heart cardiac surgery, left ventricular (LV) afterload was modified by transient aortic occlusion. Simultaneous assessment of whole-heart electrophysiology and LV deformation was performed using an epicardial sock (240 electrodes) and speckle-tracking transesophageal echocardiography. Parameters were matched to 6 American Heart Association LV model segments. The association between changes in regional myocardial segment length and activation-recovery interval (ARI; a conventional surrogate for action potential duration) was studied using mixed-effect models.
Increased ventricular loading reduced longitudinal shortening (P = .01) and shortened ARI (P = .02), but changes were heterogeneous between cardiac segments. Increased regional longitudinal shortening was associated with ARI shortening (effect size 0.20 [0.01–0.38] ms/%; P = .04) and increased local ARI dispersion (effect size –0.13 [–0.23 to –0.03] ms/%; P = .04). At the whole organ level, increased mechanical dispersion translated into increased dispersion of repolarization (correlation coefficient r = 0.81; P = .01).
Mechanoelectric feedback can establish a potentially proarrhythmic substrate in the human heart and should be considered to advance our understanding and prevention of cardiac arrhythmias.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33932588</pmid><doi>10.1016/j.hrthm.2021.04.026</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5773-0344</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-5271 |
ispartof | Heart rhythm, 2021-08, Vol.18 (8), p.1406-1413 |
issn | 1547-5271 1556-3871 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8353585 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Aged Arrhythmia Arrhythmias, Cardiac - diagnosis Arrhythmias, Cardiac - physiopathology Cardiac strain Echocardiography Electrocardiography Electromechanical coupling Experimental Feedback Female Heart Conduction System - physiopathology Heart Ventricles - diagnostic imaging Heart Ventricles - physiopathology Humans Male Mechanoelectric feedback Middle Aged Myocardial Contraction - physiology Repolarization |
title | Direct in vivo assessment of global and regional mechanoelectric feedback in the intact human heart |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20in%C2%A0vivo%20assessment%20of%20global%20and%20regional%20mechanoelectric%20feedback%20in%20the%20intact%20human%20heart&rft.jtitle=Heart%20rhythm&rft.au=Orini,%20Michele&rft.date=2021-08&rft.volume=18&rft.issue=8&rft.spage=1406&rft.epage=1413&rft.pages=1406-1413&rft.issn=1547-5271&rft.eissn=1556-3871&rft_id=info:doi/10.1016/j.hrthm.2021.04.026&rft_dat=%3Cproquest_pubme%3E2520850290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2520850290&rft_id=info:pmid/33932588&rft_els_id=S1547527121004057&rfr_iscdi=true |