Neutron Diffraction Study of a Sintered Iron Electrode In Operando

Iron is a promising, earth-abundant material for future energy applications. In this study, we use a neutron diffractometer to investigate the properties of an iron electrode in an alkaline environment. As neutrons penetrate deeply into materials, neutron scattering gives us a unique insight into wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-08, Vol.125 (30), p.16391-16402
Hauptverfasser: Weninger, Bernhard M. H, Thijs, Michel A, Nijman, Jeroen A. C, van Eijck, Lambert, Mulder, Fokko M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16402
container_issue 30
container_start_page 16391
container_title Journal of physical chemistry. C
container_volume 125
creator Weninger, Bernhard M. H
Thijs, Michel A
Nijman, Jeroen A. C
van Eijck, Lambert
Mulder, Fokko M
description Iron is a promising, earth-abundant material for future energy applications. In this study, we use a neutron diffractometer to investigate the properties of an iron electrode in an alkaline environment. As neutrons penetrate deeply into materials, neutron scattering gives us a unique insight into what is happening inside the electrode. We made our measurements while the electrode was charging or discharging. Our key questions are: Which phases occur for the first and second discharge plateaus? And why are iron electrodes less responsive at higher discharge rates? We conclude that metallic iron and iron hydroxide form the redox pair for the first discharge plateau. For the second discharge plateau, we found a phase similar to feroxyhyte but with symmetrical and equally spaced arrangement of hydrogen atoms. The data suggest that no other iron oxide or iron (oxy)­hydroxide formed. Remarkable findings include the following: (1) substantial amounts of iron hydroxide are always present inside the electrode. (2) Passivation is mostly caused by iron hydroxide that is unable to recharge. (3) Iron fractions change as expected, while iron hydroxide fractions are delayed, resulting in substantial amounts of amorphous, undetectable iron phases. About 40% of the participating iron of the first plateau and about 55% of the participating iron for the second plateau are undetectable. (4) Massive and unexpected precipitation of iron hydroxide occurs in the transition from discharging to charging. (2), (3), and (4) together cause accumulation of iron hydroxide inside the electrode.
doi_str_mv 10.1021/acs.jpcc.1c03263
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8350908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561484101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-9ec044b17970217d4bdfa414c40ede52566ed844a24270340320ede7508344703</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqWwM6GMDKTY8eVrQYJSoFJFh8JsufYFUqVxsROk_vc4tFQwMPmke-_53Y-Qc0aHjEbsWio3XK6VGjJFeZTwA9JnOY_CFOL4cD9D2iMnzi0pjTll_Jj0OPAsYZD3yd0zto01dXBfFoWVqin9PG9avQlMEchgXtYNWtTBpBONK1RerTGY1MFsjVbW2pySo0JWDs9274C8PoxfRk_hdPY4Gd1OQwmcN2GOigIsWJqnvnqqYaELCQwUUNQYR3GSoM4AZARRSjn4g7pFGtOM-xMoH5Cbbe66XaxQK6wbKyuxtuVK2o0wshR_N3X5Lt7Mp8h4THOfMiCXuwBrPlp0jViVTmFVyRpN64SvwCAD5hkNCN1KlTXOWSz23zAqOvTCoxcderFD7y0Xv-vtDT-sveBqK_i2mtbWntb_eV9oA47y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561484101</pqid></control><display><type>article</type><title>Neutron Diffraction Study of a Sintered Iron Electrode In Operando</title><source>American Chemical Society Journals</source><creator>Weninger, Bernhard M. H ; Thijs, Michel A ; Nijman, Jeroen A. C ; van Eijck, Lambert ; Mulder, Fokko M</creator><creatorcontrib>Weninger, Bernhard M. H ; Thijs, Michel A ; Nijman, Jeroen A. C ; van Eijck, Lambert ; Mulder, Fokko M</creatorcontrib><description>Iron is a promising, earth-abundant material for future energy applications. In this study, we use a neutron diffractometer to investigate the properties of an iron electrode in an alkaline environment. As neutrons penetrate deeply into materials, neutron scattering gives us a unique insight into what is happening inside the electrode. We made our measurements while the electrode was charging or discharging. Our key questions are: Which phases occur for the first and second discharge plateaus? And why are iron electrodes less responsive at higher discharge rates? We conclude that metallic iron and iron hydroxide form the redox pair for the first discharge plateau. For the second discharge plateau, we found a phase similar to feroxyhyte but with symmetrical and equally spaced arrangement of hydrogen atoms. The data suggest that no other iron oxide or iron (oxy)­hydroxide formed. Remarkable findings include the following: (1) substantial amounts of iron hydroxide are always present inside the electrode. (2) Passivation is mostly caused by iron hydroxide that is unable to recharge. (3) Iron fractions change as expected, while iron hydroxide fractions are delayed, resulting in substantial amounts of amorphous, undetectable iron phases. About 40% of the participating iron of the first plateau and about 55% of the participating iron for the second plateau are undetectable. (4) Massive and unexpected precipitation of iron hydroxide occurs in the transition from discharging to charging. (2), (3), and (4) together cause accumulation of iron hydroxide inside the electrode.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c03263</identifier><identifier>PMID: 34386149</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2021-08, Vol.125 (30), p.16391-16402</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society.</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-9ec044b17970217d4bdfa414c40ede52566ed844a24270340320ede7508344703</citedby><cites>FETCH-LOGICAL-a433t-9ec044b17970217d4bdfa414c40ede52566ed844a24270340320ede7508344703</cites><orcidid>0000-0003-0526-7081 ; 0000-0002-8141-2175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c03263$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c03263$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34386149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weninger, Bernhard M. H</creatorcontrib><creatorcontrib>Thijs, Michel A</creatorcontrib><creatorcontrib>Nijman, Jeroen A. C</creatorcontrib><creatorcontrib>van Eijck, Lambert</creatorcontrib><creatorcontrib>Mulder, Fokko M</creatorcontrib><title>Neutron Diffraction Study of a Sintered Iron Electrode In Operando</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Iron is a promising, earth-abundant material for future energy applications. In this study, we use a neutron diffractometer to investigate the properties of an iron electrode in an alkaline environment. As neutrons penetrate deeply into materials, neutron scattering gives us a unique insight into what is happening inside the electrode. We made our measurements while the electrode was charging or discharging. Our key questions are: Which phases occur for the first and second discharge plateaus? And why are iron electrodes less responsive at higher discharge rates? We conclude that metallic iron and iron hydroxide form the redox pair for the first discharge plateau. For the second discharge plateau, we found a phase similar to feroxyhyte but with symmetrical and equally spaced arrangement of hydrogen atoms. The data suggest that no other iron oxide or iron (oxy)­hydroxide formed. Remarkable findings include the following: (1) substantial amounts of iron hydroxide are always present inside the electrode. (2) Passivation is mostly caused by iron hydroxide that is unable to recharge. (3) Iron fractions change as expected, while iron hydroxide fractions are delayed, resulting in substantial amounts of amorphous, undetectable iron phases. About 40% of the participating iron of the first plateau and about 55% of the participating iron for the second plateau are undetectable. (4) Massive and unexpected precipitation of iron hydroxide occurs in the transition from discharging to charging. (2), (3), and (4) together cause accumulation of iron hydroxide inside the electrode.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqWwM6GMDKTY8eVrQYJSoFJFh8JsufYFUqVxsROk_vc4tFQwMPmke-_53Y-Qc0aHjEbsWio3XK6VGjJFeZTwA9JnOY_CFOL4cD9D2iMnzi0pjTll_Jj0OPAsYZD3yd0zto01dXBfFoWVqin9PG9avQlMEchgXtYNWtTBpBONK1RerTGY1MFsjVbW2pySo0JWDs9274C8PoxfRk_hdPY4Gd1OQwmcN2GOigIsWJqnvnqqYaELCQwUUNQYR3GSoM4AZARRSjn4g7pFGtOM-xMoH5Cbbe66XaxQK6wbKyuxtuVK2o0wshR_N3X5Lt7Mp8h4THOfMiCXuwBrPlp0jViVTmFVyRpN64SvwCAD5hkNCN1KlTXOWSz23zAqOvTCoxcderFD7y0Xv-vtDT-sveBqK_i2mtbWntb_eV9oA47y</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Weninger, Bernhard M. H</creator><creator>Thijs, Michel A</creator><creator>Nijman, Jeroen A. C</creator><creator>van Eijck, Lambert</creator><creator>Mulder, Fokko M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0526-7081</orcidid><orcidid>https://orcid.org/0000-0002-8141-2175</orcidid></search><sort><creationdate>20210805</creationdate><title>Neutron Diffraction Study of a Sintered Iron Electrode In Operando</title><author>Weninger, Bernhard M. H ; Thijs, Michel A ; Nijman, Jeroen A. C ; van Eijck, Lambert ; Mulder, Fokko M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-9ec044b17970217d4bdfa414c40ede52566ed844a24270340320ede7508344703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weninger, Bernhard M. H</creatorcontrib><creatorcontrib>Thijs, Michel A</creatorcontrib><creatorcontrib>Nijman, Jeroen A. C</creatorcontrib><creatorcontrib>van Eijck, Lambert</creatorcontrib><creatorcontrib>Mulder, Fokko M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weninger, Bernhard M. H</au><au>Thijs, Michel A</au><au>Nijman, Jeroen A. C</au><au>van Eijck, Lambert</au><au>Mulder, Fokko M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron Diffraction Study of a Sintered Iron Electrode In Operando</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-08-05</date><risdate>2021</risdate><volume>125</volume><issue>30</issue><spage>16391</spage><epage>16402</epage><pages>16391-16402</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Iron is a promising, earth-abundant material for future energy applications. In this study, we use a neutron diffractometer to investigate the properties of an iron electrode in an alkaline environment. As neutrons penetrate deeply into materials, neutron scattering gives us a unique insight into what is happening inside the electrode. We made our measurements while the electrode was charging or discharging. Our key questions are: Which phases occur for the first and second discharge plateaus? And why are iron electrodes less responsive at higher discharge rates? We conclude that metallic iron and iron hydroxide form the redox pair for the first discharge plateau. For the second discharge plateau, we found a phase similar to feroxyhyte but with symmetrical and equally spaced arrangement of hydrogen atoms. The data suggest that no other iron oxide or iron (oxy)­hydroxide formed. Remarkable findings include the following: (1) substantial amounts of iron hydroxide are always present inside the electrode. (2) Passivation is mostly caused by iron hydroxide that is unable to recharge. (3) Iron fractions change as expected, while iron hydroxide fractions are delayed, resulting in substantial amounts of amorphous, undetectable iron phases. About 40% of the participating iron of the first plateau and about 55% of the participating iron for the second plateau are undetectable. (4) Massive and unexpected precipitation of iron hydroxide occurs in the transition from discharging to charging. (2), (3), and (4) together cause accumulation of iron hydroxide inside the electrode.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34386149</pmid><doi>10.1021/acs.jpcc.1c03263</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0526-7081</orcidid><orcidid>https://orcid.org/0000-0002-8141-2175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-08, Vol.125 (30), p.16391-16402
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8350908
source American Chemical Society Journals
subjects C: Energy Conversion and Storage
title Neutron Diffraction Study of a Sintered Iron Electrode In Operando
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron%20Diffraction%20Study%20of%20a%20Sintered%20Iron%20Electrode%20In%20Operando&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Weninger,%20Bernhard%20M.%20H&rft.date=2021-08-05&rft.volume=125&rft.issue=30&rft.spage=16391&rft.epage=16402&rft.pages=16391-16402&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c03263&rft_dat=%3Cproquest_pubme%3E2561484101%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561484101&rft_id=info:pmid/34386149&rfr_iscdi=true