Deep learning and the electrocardiogram: review of the current state-of-the-art
Abstract In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed si...
Gespeichert in:
Veröffentlicht in: | Europace (London, England) England), 2021-08, Vol.23 (8), p.1179-1191 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1191 |
---|---|
container_issue | 8 |
container_start_page | 1179 |
container_title | Europace (London, England) |
container_volume | 23 |
creator | Somani, Sulaiman Russak, Adam J Richter, Felix Zhao, Shan Vaid, Akhil Chaudhry, Fayzan De Freitas, Jessica K Naik, Nidhi Miotto, Riccardo Nadkarni, Girish N Narula, Jagat Argulian, Edgar Glicksberg, Benjamin S |
description | Abstract
In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement. |
doi_str_mv | 10.1093/europace/euaa377 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8350862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/europace/euaa377</oup_id><sourcerecordid>3128018039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qVaG0956qSL0goZSxHTt2D5UqKB8SEhd6tibOZAnKxqmdgPjvMeyCWi49zWjmN09v9Bj7zOEbBysPaYlhQk-5QZR1_YbtciVFKcCKt7kHa0vFhd1hH1K6AYBaWPWe7UipdGVqucsuj4mmYiCMYz-uChzbYr6mggbycwweY9uHVcT19yLSbU93ReieAL_ESONcpBlnKkNX5mGJcf7I3nU4JPq0rXvs98mvq6Oz8uLy9Pzo50XpldBzSV2lGu0BkIQySjcW6ka2RiH6hntdWVk1jaWaJAmu26qVGkxbc65r6xsr99iPje60NGtqffYScXBT7NcY713A3v27Gftrtwq3zkgFRosssL8ViOHPQml26z55GgYcKSzJicoYrq2xkNGvr9CbsMQxv-ckFwa4AfnoCDaUjyGlSN2LGQ7uMS33nJbbppVPvvz9xMvBczwZONgAYZn-L_cAuh6jig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128018039</pqid></control><display><type>article</type><title>Deep learning and the electrocardiogram: review of the current state-of-the-art</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Somani, Sulaiman ; Russak, Adam J ; Richter, Felix ; Zhao, Shan ; Vaid, Akhil ; Chaudhry, Fayzan ; De Freitas, Jessica K ; Naik, Nidhi ; Miotto, Riccardo ; Nadkarni, Girish N ; Narula, Jagat ; Argulian, Edgar ; Glicksberg, Benjamin S</creator><creatorcontrib>Somani, Sulaiman ; Russak, Adam J ; Richter, Felix ; Zhao, Shan ; Vaid, Akhil ; Chaudhry, Fayzan ; De Freitas, Jessica K ; Naik, Nidhi ; Miotto, Riccardo ; Nadkarni, Girish N ; Narula, Jagat ; Argulian, Edgar ; Glicksberg, Benjamin S</creatorcontrib><description>Abstract
In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.</description><identifier>ISSN: 1099-5129</identifier><identifier>EISSN: 1532-2092</identifier><identifier>DOI: 10.1093/europace/euaa377</identifier><identifier>PMID: 33564873</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arrhythmia ; Artificial intelligence ; Cardiomyopathy ; Decision making ; Deep learning ; EKG ; Ischemia ; Phenotyping ; Reviews</subject><ispartof>Europace (London, England), 2021-08, Vol.23 (8), p.1179-1191</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology. 2020</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</citedby><cites>FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</cites><orcidid>0000-0003-4515-8090 ; 0000-0003-0913-8674 ; 0000-0002-3165-4926 ; 0000-0002-7815-6000 ; 0000-0001-8546-9112 ; 0000-0002-6618-8793 ; 0000-0003-0042-0067 ; 0000-0003-3429-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350862/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350862/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33564873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somani, Sulaiman</creatorcontrib><creatorcontrib>Russak, Adam J</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Vaid, Akhil</creatorcontrib><creatorcontrib>Chaudhry, Fayzan</creatorcontrib><creatorcontrib>De Freitas, Jessica K</creatorcontrib><creatorcontrib>Naik, Nidhi</creatorcontrib><creatorcontrib>Miotto, Riccardo</creatorcontrib><creatorcontrib>Nadkarni, Girish N</creatorcontrib><creatorcontrib>Narula, Jagat</creatorcontrib><creatorcontrib>Argulian, Edgar</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S</creatorcontrib><title>Deep learning and the electrocardiogram: review of the current state-of-the-art</title><title>Europace (London, England)</title><addtitle>Europace</addtitle><description>Abstract
In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.</description><subject>Arrhythmia</subject><subject>Artificial intelligence</subject><subject>Cardiomyopathy</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>EKG</subject><subject>Ischemia</subject><subject>Phenotyping</subject><subject>Reviews</subject><issn>1099-5129</issn><issn>1532-2092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkc1P3DAQxa2qVaG0956qSL0goZSxHTt2D5UqKB8SEhd6tibOZAnKxqmdgPjvMeyCWi49zWjmN09v9Bj7zOEbBysPaYlhQk-5QZR1_YbtciVFKcCKt7kHa0vFhd1hH1K6AYBaWPWe7UipdGVqucsuj4mmYiCMYz-uChzbYr6mggbycwweY9uHVcT19yLSbU93ReieAL_ESONcpBlnKkNX5mGJcf7I3nU4JPq0rXvs98mvq6Oz8uLy9Pzo50XpldBzSV2lGu0BkIQySjcW6ka2RiH6hntdWVk1jaWaJAmu26qVGkxbc65r6xsr99iPje60NGtqffYScXBT7NcY713A3v27Gftrtwq3zkgFRosssL8ViOHPQml26z55GgYcKSzJicoYrq2xkNGvr9CbsMQxv-ckFwa4AfnoCDaUjyGlSN2LGQ7uMS33nJbbppVPvvz9xMvBczwZONgAYZn-L_cAuh6jig</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Somani, Sulaiman</creator><creator>Russak, Adam J</creator><creator>Richter, Felix</creator><creator>Zhao, Shan</creator><creator>Vaid, Akhil</creator><creator>Chaudhry, Fayzan</creator><creator>De Freitas, Jessica K</creator><creator>Naik, Nidhi</creator><creator>Miotto, Riccardo</creator><creator>Nadkarni, Girish N</creator><creator>Narula, Jagat</creator><creator>Argulian, Edgar</creator><creator>Glicksberg, Benjamin S</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4515-8090</orcidid><orcidid>https://orcid.org/0000-0003-0913-8674</orcidid><orcidid>https://orcid.org/0000-0002-3165-4926</orcidid><orcidid>https://orcid.org/0000-0002-7815-6000</orcidid><orcidid>https://orcid.org/0000-0001-8546-9112</orcidid><orcidid>https://orcid.org/0000-0002-6618-8793</orcidid><orcidid>https://orcid.org/0000-0003-0042-0067</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid></search><sort><creationdate>20210801</creationdate><title>Deep learning and the electrocardiogram: review of the current state-of-the-art</title><author>Somani, Sulaiman ; Russak, Adam J ; Richter, Felix ; Zhao, Shan ; Vaid, Akhil ; Chaudhry, Fayzan ; De Freitas, Jessica K ; Naik, Nidhi ; Miotto, Riccardo ; Nadkarni, Girish N ; Narula, Jagat ; Argulian, Edgar ; Glicksberg, Benjamin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrhythmia</topic><topic>Artificial intelligence</topic><topic>Cardiomyopathy</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>EKG</topic><topic>Ischemia</topic><topic>Phenotyping</topic><topic>Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somani, Sulaiman</creatorcontrib><creatorcontrib>Russak, Adam J</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Vaid, Akhil</creatorcontrib><creatorcontrib>Chaudhry, Fayzan</creatorcontrib><creatorcontrib>De Freitas, Jessica K</creatorcontrib><creatorcontrib>Naik, Nidhi</creatorcontrib><creatorcontrib>Miotto, Riccardo</creatorcontrib><creatorcontrib>Nadkarni, Girish N</creatorcontrib><creatorcontrib>Narula, Jagat</creatorcontrib><creatorcontrib>Argulian, Edgar</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Europace (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somani, Sulaiman</au><au>Russak, Adam J</au><au>Richter, Felix</au><au>Zhao, Shan</au><au>Vaid, Akhil</au><au>Chaudhry, Fayzan</au><au>De Freitas, Jessica K</au><au>Naik, Nidhi</au><au>Miotto, Riccardo</au><au>Nadkarni, Girish N</au><au>Narula, Jagat</au><au>Argulian, Edgar</au><au>Glicksberg, Benjamin S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning and the electrocardiogram: review of the current state-of-the-art</atitle><jtitle>Europace (London, England)</jtitle><addtitle>Europace</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>23</volume><issue>8</issue><spage>1179</spage><epage>1191</epage><pages>1179-1191</pages><issn>1099-5129</issn><eissn>1532-2092</eissn><abstract>Abstract
In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33564873</pmid><doi>10.1093/europace/euaa377</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4515-8090</orcidid><orcidid>https://orcid.org/0000-0003-0913-8674</orcidid><orcidid>https://orcid.org/0000-0002-3165-4926</orcidid><orcidid>https://orcid.org/0000-0002-7815-6000</orcidid><orcidid>https://orcid.org/0000-0001-8546-9112</orcidid><orcidid>https://orcid.org/0000-0002-6618-8793</orcidid><orcidid>https://orcid.org/0000-0003-0042-0067</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-5129 |
ispartof | Europace (London, England), 2021-08, Vol.23 (8), p.1179-1191 |
issn | 1099-5129 1532-2092 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8350862 |
source | Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Arrhythmia Artificial intelligence Cardiomyopathy Decision making Deep learning EKG Ischemia Phenotyping Reviews |
title | Deep learning and the electrocardiogram: review of the current state-of-the-art |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20and%20the%20electrocardiogram:%20review%20of%20the%20current%20state-of-the-art&rft.jtitle=Europace%20(London,%20England)&rft.au=Somani,%20Sulaiman&rft.date=2021-08-01&rft.volume=23&rft.issue=8&rft.spage=1179&rft.epage=1191&rft.pages=1179-1191&rft.issn=1099-5129&rft.eissn=1532-2092&rft_id=info:doi/10.1093/europace/euaa377&rft_dat=%3Cproquest_pubme%3E3128018039%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128018039&rft_id=info:pmid/33564873&rft_oup_id=10.1093/europace/euaa377&rfr_iscdi=true |