Deep learning and the electrocardiogram: review of the current state-of-the-art

Abstract In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Europace (London, England) England), 2021-08, Vol.23 (8), p.1179-1191
Hauptverfasser: Somani, Sulaiman, Russak, Adam J, Richter, Felix, Zhao, Shan, Vaid, Akhil, Chaudhry, Fayzan, De Freitas, Jessica K, Naik, Nidhi, Miotto, Riccardo, Nadkarni, Girish N, Narula, Jagat, Argulian, Edgar, Glicksberg, Benjamin S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue 8
container_start_page 1179
container_title Europace (London, England)
container_volume 23
creator Somani, Sulaiman
Russak, Adam J
Richter, Felix
Zhao, Shan
Vaid, Akhil
Chaudhry, Fayzan
De Freitas, Jessica K
Naik, Nidhi
Miotto, Riccardo
Nadkarni, Girish N
Narula, Jagat
Argulian, Edgar
Glicksberg, Benjamin S
description Abstract In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.
doi_str_mv 10.1093/europace/euaa377
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8350862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/europace/euaa377</oup_id><sourcerecordid>3128018039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qVaG0956qSL0goZSxHTt2D5UqKB8SEhd6tibOZAnKxqmdgPjvMeyCWi49zWjmN09v9Bj7zOEbBysPaYlhQk-5QZR1_YbtciVFKcCKt7kHa0vFhd1hH1K6AYBaWPWe7UipdGVqucsuj4mmYiCMYz-uChzbYr6mggbycwweY9uHVcT19yLSbU93ReieAL_ESONcpBlnKkNX5mGJcf7I3nU4JPq0rXvs98mvq6Oz8uLy9Pzo50XpldBzSV2lGu0BkIQySjcW6ka2RiH6hntdWVk1jaWaJAmu26qVGkxbc65r6xsr99iPje60NGtqffYScXBT7NcY713A3v27Gftrtwq3zkgFRosssL8ViOHPQml26z55GgYcKSzJicoYrq2xkNGvr9CbsMQxv-ckFwa4AfnoCDaUjyGlSN2LGQ7uMS33nJbbppVPvvz9xMvBczwZONgAYZn-L_cAuh6jig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128018039</pqid></control><display><type>article</type><title>Deep learning and the electrocardiogram: review of the current state-of-the-art</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Somani, Sulaiman ; Russak, Adam J ; Richter, Felix ; Zhao, Shan ; Vaid, Akhil ; Chaudhry, Fayzan ; De Freitas, Jessica K ; Naik, Nidhi ; Miotto, Riccardo ; Nadkarni, Girish N ; Narula, Jagat ; Argulian, Edgar ; Glicksberg, Benjamin S</creator><creatorcontrib>Somani, Sulaiman ; Russak, Adam J ; Richter, Felix ; Zhao, Shan ; Vaid, Akhil ; Chaudhry, Fayzan ; De Freitas, Jessica K ; Naik, Nidhi ; Miotto, Riccardo ; Nadkarni, Girish N ; Narula, Jagat ; Argulian, Edgar ; Glicksberg, Benjamin S</creatorcontrib><description>Abstract In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.</description><identifier>ISSN: 1099-5129</identifier><identifier>EISSN: 1532-2092</identifier><identifier>DOI: 10.1093/europace/euaa377</identifier><identifier>PMID: 33564873</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arrhythmia ; Artificial intelligence ; Cardiomyopathy ; Decision making ; Deep learning ; EKG ; Ischemia ; Phenotyping ; Reviews</subject><ispartof>Europace (London, England), 2021-08, Vol.23 (8), p.1179-1191</ispartof><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology. 2020</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</citedby><cites>FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</cites><orcidid>0000-0003-4515-8090 ; 0000-0003-0913-8674 ; 0000-0002-3165-4926 ; 0000-0002-7815-6000 ; 0000-0001-8546-9112 ; 0000-0002-6618-8793 ; 0000-0003-0042-0067 ; 0000-0003-3429-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350862/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350862/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33564873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somani, Sulaiman</creatorcontrib><creatorcontrib>Russak, Adam J</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Vaid, Akhil</creatorcontrib><creatorcontrib>Chaudhry, Fayzan</creatorcontrib><creatorcontrib>De Freitas, Jessica K</creatorcontrib><creatorcontrib>Naik, Nidhi</creatorcontrib><creatorcontrib>Miotto, Riccardo</creatorcontrib><creatorcontrib>Nadkarni, Girish N</creatorcontrib><creatorcontrib>Narula, Jagat</creatorcontrib><creatorcontrib>Argulian, Edgar</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S</creatorcontrib><title>Deep learning and the electrocardiogram: review of the current state-of-the-art</title><title>Europace (London, England)</title><addtitle>Europace</addtitle><description>Abstract In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.</description><subject>Arrhythmia</subject><subject>Artificial intelligence</subject><subject>Cardiomyopathy</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>EKG</subject><subject>Ischemia</subject><subject>Phenotyping</subject><subject>Reviews</subject><issn>1099-5129</issn><issn>1532-2092</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkc1P3DAQxa2qVaG0956qSL0goZSxHTt2D5UqKB8SEhd6tibOZAnKxqmdgPjvMeyCWi49zWjmN09v9Bj7zOEbBysPaYlhQk-5QZR1_YbtciVFKcCKt7kHa0vFhd1hH1K6AYBaWPWe7UipdGVqucsuj4mmYiCMYz-uChzbYr6mggbycwweY9uHVcT19yLSbU93ReieAL_ESONcpBlnKkNX5mGJcf7I3nU4JPq0rXvs98mvq6Oz8uLy9Pzo50XpldBzSV2lGu0BkIQySjcW6ka2RiH6hntdWVk1jaWaJAmu26qVGkxbc65r6xsr99iPje60NGtqffYScXBT7NcY713A3v27Gftrtwq3zkgFRosssL8ViOHPQml26z55GgYcKSzJicoYrq2xkNGvr9CbsMQxv-ckFwa4AfnoCDaUjyGlSN2LGQ7uMS33nJbbppVPvvz9xMvBczwZONgAYZn-L_cAuh6jig</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Somani, Sulaiman</creator><creator>Russak, Adam J</creator><creator>Richter, Felix</creator><creator>Zhao, Shan</creator><creator>Vaid, Akhil</creator><creator>Chaudhry, Fayzan</creator><creator>De Freitas, Jessica K</creator><creator>Naik, Nidhi</creator><creator>Miotto, Riccardo</creator><creator>Nadkarni, Girish N</creator><creator>Narula, Jagat</creator><creator>Argulian, Edgar</creator><creator>Glicksberg, Benjamin S</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4515-8090</orcidid><orcidid>https://orcid.org/0000-0003-0913-8674</orcidid><orcidid>https://orcid.org/0000-0002-3165-4926</orcidid><orcidid>https://orcid.org/0000-0002-7815-6000</orcidid><orcidid>https://orcid.org/0000-0001-8546-9112</orcidid><orcidid>https://orcid.org/0000-0002-6618-8793</orcidid><orcidid>https://orcid.org/0000-0003-0042-0067</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid></search><sort><creationdate>20210801</creationdate><title>Deep learning and the electrocardiogram: review of the current state-of-the-art</title><author>Somani, Sulaiman ; Russak, Adam J ; Richter, Felix ; Zhao, Shan ; Vaid, Akhil ; Chaudhry, Fayzan ; De Freitas, Jessica K ; Naik, Nidhi ; Miotto, Riccardo ; Nadkarni, Girish N ; Narula, Jagat ; Argulian, Edgar ; Glicksberg, Benjamin S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-ef45b6c00ae25856b907b3d85aacb1c64934bb9e7e3e216d4d3608d711679cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Arrhythmia</topic><topic>Artificial intelligence</topic><topic>Cardiomyopathy</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>EKG</topic><topic>Ischemia</topic><topic>Phenotyping</topic><topic>Reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somani, Sulaiman</creatorcontrib><creatorcontrib>Russak, Adam J</creatorcontrib><creatorcontrib>Richter, Felix</creatorcontrib><creatorcontrib>Zhao, Shan</creatorcontrib><creatorcontrib>Vaid, Akhil</creatorcontrib><creatorcontrib>Chaudhry, Fayzan</creatorcontrib><creatorcontrib>De Freitas, Jessica K</creatorcontrib><creatorcontrib>Naik, Nidhi</creatorcontrib><creatorcontrib>Miotto, Riccardo</creatorcontrib><creatorcontrib>Nadkarni, Girish N</creatorcontrib><creatorcontrib>Narula, Jagat</creatorcontrib><creatorcontrib>Argulian, Edgar</creatorcontrib><creatorcontrib>Glicksberg, Benjamin S</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Europace (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somani, Sulaiman</au><au>Russak, Adam J</au><au>Richter, Felix</au><au>Zhao, Shan</au><au>Vaid, Akhil</au><au>Chaudhry, Fayzan</au><au>De Freitas, Jessica K</au><au>Naik, Nidhi</au><au>Miotto, Riccardo</au><au>Nadkarni, Girish N</au><au>Narula, Jagat</au><au>Argulian, Edgar</au><au>Glicksberg, Benjamin S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning and the electrocardiogram: review of the current state-of-the-art</atitle><jtitle>Europace (London, England)</jtitle><addtitle>Europace</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>23</volume><issue>8</issue><spage>1179</spage><epage>1191</epage><pages>1179-1191</pages><issn>1099-5129</issn><eissn>1532-2092</eissn><abstract>Abstract In the recent decade, deep learning, a subset of artificial intelligence and machine learning, has been used to identify patterns in big healthcare datasets for disease phenotyping, event predictions, and complex decision making. Public datasets for electrocardiograms (ECGs) have existed since the 1980s and have been used for very specific tasks in cardiology, such as arrhythmia, ischemia, and cardiomyopathy detection. Recently, private institutions have begun curating large ECG databases that are orders of magnitude larger than the public databases for ingestion by deep learning models. These efforts have demonstrated not only improved performance and generalizability in these aforementioned tasks but also application to novel clinical scenarios. This review focuses on orienting the clinician towards fundamental tenets of deep learning, state-of-the-art prior to its use for ECG analysis, and current applications of deep learning on ECGs, as well as their limitations and future areas of improvement.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33564873</pmid><doi>10.1093/europace/euaa377</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4515-8090</orcidid><orcidid>https://orcid.org/0000-0003-0913-8674</orcidid><orcidid>https://orcid.org/0000-0002-3165-4926</orcidid><orcidid>https://orcid.org/0000-0002-7815-6000</orcidid><orcidid>https://orcid.org/0000-0001-8546-9112</orcidid><orcidid>https://orcid.org/0000-0002-6618-8793</orcidid><orcidid>https://orcid.org/0000-0003-0042-0067</orcidid><orcidid>https://orcid.org/0000-0003-3429-9621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-5129
ispartof Europace (London, England), 2021-08, Vol.23 (8), p.1179-1191
issn 1099-5129
1532-2092
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8350862
source Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Arrhythmia
Artificial intelligence
Cardiomyopathy
Decision making
Deep learning
EKG
Ischemia
Phenotyping
Reviews
title Deep learning and the electrocardiogram: review of the current state-of-the-art
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20and%20the%20electrocardiogram:%20review%20of%20the%20current%20state-of-the-art&rft.jtitle=Europace%20(London,%20England)&rft.au=Somani,%20Sulaiman&rft.date=2021-08-01&rft.volume=23&rft.issue=8&rft.spage=1179&rft.epage=1191&rft.pages=1179-1191&rft.issn=1099-5129&rft.eissn=1532-2092&rft_id=info:doi/10.1093/europace/euaa377&rft_dat=%3Cproquest_pubme%3E3128018039%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128018039&rft_id=info:pmid/33564873&rft_oup_id=10.1093/europace/euaa377&rfr_iscdi=true